Turbine blade is one of the most important and critical components in the large liquid-propellant rocket engines. To improve the reliability and safety and to extend the reusable lifecyclesof engines, it is very important to make great efforts in the research of fault diagnosis and control technologies for the structural damage and destruction in the turbine blade. Thus, a catastrophe theory based modeling andanalytical method for the structural fault diagnosis and control of turbine blades will be proposed and researched thoroughly in the project. Firstly, the nonlinear and catastrophic dynamic problem in the structural faults of turbine blades will be proposed. Then,to solve the high-dimensional and non-linear limitatons existed in the dynamic modeling and analysis of structural faults for turbine blades, a catastrophe theory based method will also be proposed and researched thoroughly in the project based on the odd point theory and topology method.Secondly, catastrophic characteristics and their mechanism of formation and change such as the boundary and distribution, will be explored thoroughly to make deep recognition for the nonlinear catastrophic discipline and rules in the appearance and evolution process of structural faults for turbine blades.Results of the research will not only provide great promotion in the research of methodsfor the structural fault diagnosis, forecast and control of engines, and also the methods founded can provide significant reference value for the investigation of the similar problems in the other critical components of engines and the large-scale and complicate systems such as the areonautic and chemical systems, and so on.
涡轮叶片是大型液体火箭发动机中最薄弱、最易出现故障的关键结构部件之一。涡轮叶片结构故障的及时准确诊断与控制,对提高液体火箭发动机的可靠性与安全性,以及发动机的重复使用次数和工作寿命,具有十分重要的意义。本项目在液体火箭发动机故障诊断与控制研究中,首次提出涡轮叶片关键部件结构故障所面临的非线性突变动力学问题,并提出一种基于奇点集合和拓扑学方法的突变理论建模方法,通过模型的参数化有效解决涡轮叶片结构故障动力学建模与分析面临的高维非线性问题。其次,在此基础上,开展突变机制、突变边界及其分布规律等突变动力学特性的研究,深入探究和了解涡轮叶片结构故障发生和演化发展过程中的非线性突变机制与规律。项目的研究将对发动机结构故障诊断、预测与控制等方法的研究产生推动,所形成的理论、方法和结果对液体火箭发动机其它关键结构部件以及航空、化工等大型复杂热动力系统同类问题的研究具有重要的参考借鉴意义。
项目按照计划书安排,针对大型液体火箭发动机涡轮叶片关键结构部件,运用基于奇点理论、拓扑学方法的突变理论建模方法,建立了涡轮叶片结构故障诊断与控制的非线性突变动力学模型,分析了涡轮叶片产生突变性结构故障的具体临界区域和边界条件,探究了涡轮叶片结构故障的内在突变机制以及突变边界在外部干扰因素影响下的发展变化规律。.①分析了涡轮叶片所承受的拉伸应力(离心力作用)和弯曲应力(离心力、气动力和振动力作用)这两种载荷激励,建立了涡轮叶片的结构动力学模型。.②将基于循环的疲劳损伤计算模型转换为基于时间的疲劳损伤计算模型,建立了涡轮叶片的损伤动力学模型,并开发了液体火箭发动机涡轮叶片结构损伤仿真系统,基于不同的液体火箭发动机起动方案,对其主涡轮叶片损伤发展进行了仿真研究,并分析了流量调节器起动流量对主涡轮叶片损伤增量的影响。.③以应用最为广泛的尖点突变,建立了液体火箭发动机涡轮叶片结构损伤的尖点突变模型,对其振幅突变流形和分岔集进行了研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
miR Let7-IKKε-YAP/TEAD调控胶质瘤恶性进展机制及靶向IKKε抑制剂 的抑瘤作用
可重复使用液体火箭发动机突变减损控制理论与方法研究
涡轮冷却叶片结构可靠性分析方法研究
分级燃烧循环液体火箭发动机的变结构控制
进化计算在液体火箭发动机故障诊断技术中的应用