Recommendation systems in social network can personalize the information service for users through capturing their interests and hobbies embodied in the social network, which is one of the core supporting technologies of many social network applications. Most of the existing methods on social recommendation assume that there is only one kind of user relation in the social network. However, in reality, there exist various kinds of users' relations in social network and its extended applications, such as interpersonal relationships include friendship relations, colleague relations, etc., and interactive relationships include purchasing the same product, online messaging, etc. Moreover, each kind of relation may play a distinct role in a particular recommendation task. The fully exploitation of these multiple relations in social network will play a very important role in the realization of high-quality recommendation system. In order to combine a rich variety of relations of users in social network into recommendation system, our research firstly establishes the models of these various kinds of relations. And in order to distinct different importance of different relations with respect to a particular recommendation task, we introduce several relation analysis methods. To enhance the performance of recommendation system by utilizing the multiple relations, our research also address several social recommendation algorithms based on collaborative filtering, machine learning and data mining respectively. At last we verify our proposed models and algorithms in real online social network and analysis the accuracy and robustness of our multi-relational social network recommendation mechanism.
社会网络中的推荐系统通过捕捉用户在社会网络中体现的兴趣爱好,使之获得个性化的信息服务,是众多社会网络应用的核心支撑技术之一。已有的推荐算法大多假设社会网络中只有一种用户关系,但事实上社会网络及其扩展应用中存在着多种类型的用户关系,如人际关系包括朋友、同事等,互动关系可包括共同购买同一商品、在线通讯等。不同的关系对于特定的推荐任务所起的作用是大不一样的。充分利用多种用户关系对实现高质量的社会网络推荐系统具有十分重要的作用。为了将这些关系运用到推荐系统中,本研究首先为社会网络中的多种用户关系进行建模;为体现不同用户关系对推荐任务的不同作用,设计具体的关系分析方法;接着,在如何使用多种用户关系提高推荐系统的性能方面,本研究分别基于协作过滤、机器学习和数据挖掘技术为多关系社会网络设计若干推荐算法并进行评估;最后使用真实在线社会网络数据对所述模型算法进行验证,分析多社会关系推荐机制的准确性和健壮性。
本项目严格根据研究计划对项目合同书中研究内容进行深入研究,并根据当前国内外研究热点和前沿对相关研究内容进行了适度的扩展和丰富。完成的主要研究内容包括下面几个部分:(1)对社会网络中的多种用户关系进行建模和分析;(2)借鉴机器学习、数据挖掘中的方法和模型,为多关系社会网络设计不同的推荐算法;(3)推荐攻击防御与隐私保护。项目组完成了全部预定的研究工作,并在论文、应用和人才培养方面都超过了预定目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
跨社交网络用户对齐技术综述
黄河流域水资源利用时空演变特征及驱动要素
拥堵路网交通流均衡分配模型
基于多模态信息特征融合的犯罪预测算法研究
防哮方调控HIF1/2缺氧应激反应经TGF-β/Smad通路抑制哮喘气道重塑和炎症的作用及分子机制
基于事件的社会网络中群组推荐关键技术
移动社会网络中基于信任关系的情境感知推荐研究
社会化网络社区中跨域推荐技术研究
基于云支持的移动社会网络个性化推荐关键技术研究