It is well known that reaction-diffusion systems have been widely employed in many fields such as physics, chemistry and biology, and it has been recently paid great attention for many scholars. Formally, reaction-diffusion systems have strongly indefinite variational structure from a variational point of view. Since strong indefinite variational provlems are always very challenging problems in nonlinear variational problems, which makes the study on reaction-diffusion systems very difficult, hence it is a significant project to study such problems. In this project, we will use variational methods to explore some key issues for reaction-diffusion systems. Among these issues are the existence of stationary solution and non-stationary solution, as well as some dynamical properties of the semi-classical ground state solutions such as the existence, concentration phenomena, convergence, exponential decay and regularity etc. These are very important yet very challenging mathematical problems, as such, we also expect to develop some novel and more effective techniques which will enable us to obtain some essentially new results and significantly contribute to the theory of reaction-diffusion systems. Moreover, these studies are beneficial to investigate the other nonlinear variational problems.
众所周知,反应扩散系统在物理、化学和生物等领域中被广泛应用,引起了许多学者的极大兴趣。从变分的观点看,反应扩散系统形式上具有强不定的变分结构。由于强不定问题一直是非线性变分问题中极具有挑战性的问题,从而使得反应扩散系统的研究变得十分困难,因此对其研究是具有重要意义的课题。本项目将通过变分方法重点研究反应扩散系统的核心问题:稳态解和非稳态解的存在性及动力学性态,如基态解的存在性,半经典解的存在性、集中性、收敛性、衰减性和正则性等。发展和开拓非线性分析方法、技巧,深化数学工具,对所研究的问题获得若干全新的、本质性的结果,推进反应扩散系统定性理论的发展。并且,这些研究将会有助于解决其他非线性变分问题。
众所周知,反应扩散系统在物理、化学和生物等领域中被广泛应用,引起了许多学者的极大兴趣。反应扩散系统属于强不定问题,并且是非线性变分问题中极具有挑战性的问题,因此对其研究是具有重要意义的课题。本项目通过变分方法重点研究反应扩散系统的核心问题:驻波解的存在性及动力学性态,如基态解的存在性,半经典解的存在性、集中性、收敛性、衰减性和正则性等。发展和开拓非线性分析方法、技巧,深化数学工具,对所研究的问题获得若干全新的、本质性的结果,推进反应扩散系统定性理论的发展。并且,部分研究思想和方法已成功用到非局部Chern-Simons-Schrödinger耦合系统,Schrödinger-Poisson耦合系统,Dirac方程和Dirac-Poisson耦合系统等问题的研究,获得了一系列较为深刻的重要成果。项目组成员已发表SCI论文13篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
基于SSVEP 直接脑控机器人方向和速度研究
拥堵路网交通流均衡分配模型
低轨卫星通信信道分配策略
卫生系统韧性研究概况及其展望
聚酰胺-金纳米偶联物的构建及其下调PD-1基因诱导T细胞功能恢复和c-Myc基因促进癌细胞凋亡的机制
带奇性及交错扩散项的反应扩散方程解的定性研究
入侵反应扩散捕食系统解的存在性与动力学性质
图上带吸收项的热方程整体解的存在性研究
带非局部项的薛定谔方程组正解的存在性及其性态研究