Variable rotor speed technology is able to enhance greatly the performance in fuel consumption, noise reduction and maneuver ability, but key mechanisms have not been fully explored in variable rotor speed transition process for the coupled flight dynamics, torque transmission structure dynamics and turbo-shaft engine control dynamics, and there is also a lack of designing methods for modelling the complicated dynamical system and relative system controllers. In this project, an integrated nonlinear system mathematical model describing flight,torque transmission structure and engine control dynamics will be investigated in detail, and some new computation methods for understanding the torsional vibration variation will be developed on the basis of the formal research; Specifically, the relationship would be discussed between the variation of rotor speed flight conditions and the engine control, and some new methods would be proposed for developing adaptive torsional vibration suppression method and multivariable fast response control based on predictive control theory of the turbo-shaft engine. Moreover, semi-physical simulations would be carried out for validating the precision of the coupled dynamic system model and the effectiveness of the adaptive notch filter and fast control law of the engine. The expected research results will bring benefits for simulating precisely rotorcraft flight dynamics, and disclosing dominant law among flight, torque transmission structure and engine control dynamics, furthermore it can boost the development and provide instructions in designing for fast response control laws of rotorcraft power system and torsional vibration suppression methods, rotorcraft dynamic system stability analysis as well as control performance prediction.
变旋翼转速技术可使得旋翼飞行器飞行性能大为提高,但变转速过程中存在复杂的飞行力学/扭矩传递结构力学/发动机气动热力学的相互作用机理,尚未被探明,也缺乏相应的模型仿真和控制律设计方法,是凾待深入探讨和解决的前沿问题。本项目拟在前期研究的基础上,研究适于模拟变旋翼转速过程的飞行器/传动/发动机耦合非线性动力学模型,并发展系统扭振模态变化规律的分析方法;探讨旋翼转速、飞行条件和发动机控制量变化对扭振模态的影响规律,并提出自适应扭振抑制及基于预测优化的发动机多变量快速响应控制的设计方法;开展旋翼飞行器/发动机控制半物理仿真试验,验证多学科耦合动力学模型的正确性,以及自适应扭振滤波与发动机快速响应控制方法的有效性。预期成果对促进变转速飞行器全系统动力学模拟技术发展、揭示飞行力学/扭矩传递结构力学/发动机气动热力学耦合机理有重要作用,并可为发动机扭振滤波器及控制律设计提供基础理论和技术支持。
随着旋翼飞行器、发动机设计技术的迅速发展,以往制约变旋翼转速技术实施的技术瓶颈正在逐步消除。然而,对于涡轴发动机而言,变旋翼转速也带来亟需解决的控制问题。首先,为解决变旋翼转速过程中,直升机/涡轴发动机综合系统低阶扭振模态显著变化导致涡轴发动机端扭振不稳定性问题,开展了自适应扭振抑制方法研究。建立了飞行力学/轴系结构动力学/发动机耦合系统模型,揭示系统扭振机理,并分别提出了基于快速傅里叶变换与基于最小均方差的自适应扭振抑制方法以有效抑制变旋翼转速下扭振基频大范围变动的低阶扭振分量,实现了自适应扭振抑制。此外,为了实现变旋翼转速直升机/涡轴发动机高品质快速响应控制,建立了机载直升机需用扭矩模型和具有扭振特性的涡轴发动机参数模型离线预测模型,提出基于支持向量回归的涡轴发动机非线性模型预测控制方法,显著降低了变旋翼转速过程动力涡轮转速的瞬间超调与下垂量,实现涡轴发动机的高品质控制。上述控制方法经过了数字仿真、实物在回路仿真等试验验证,均证明了有效性,研究成果为变转速直升机推进系统控制律的设计奠定了理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
基于LASSO-SVMR模型城市生活需水量的预测
拥堵路网交通流均衡分配模型
基于多模态信息特征融合的犯罪预测算法研究
扭振特性约束的混合动力汽车换挡过程转速、转矩双同步机理及控制方法
变转速刚性旋翼载荷控制研究
电控旋翼自适应控制方法研究
近空间可变翼飞行器多模态鲁棒自适应切换控制研究