All-in-fiber microfluidic device is a hot research topic in recent years and attracts the intensive attentions and wide investigations of scientists. In particular, hollow fibers with air cores have attracted great research interest because of the micrometer-sized air holes are perfect microfluidic channels that allow gas/liquid to pass through. However, there is the conflict between the input/output of light and liquid in most cases. Here we will propose one novel fiber-fluidic platform: Microfiber-hollow fiber-integrated stereo microfluidic devices. We will wrap a subwavelength-diameter microfiber on a hollow fiber with ultra-thin wall. A number of functions can be realized and integrated on such an assistant fiber by specializing the surface of the hollow fiber and tuning the stereo geometry of the microfiber coils. Moreover, strong interaction between the evanescence field of the light propagating in the microfiber and the liquid in the hollow core can be expected. The optical channels and liquid channels can be combined and divorced smoothly. With many advantages including compact size and deployment flexibility, it has promising potential in sensors,lasers and signal processing. In this project, we will focus on the manufacturing-process development, the mechanism of the interaction between light and liquid, and the methods of multi-point multi-parameter and multi–channel measurements and the applications in online chemical and bio- detectors and tunable devices.
全光纤微流控器件近年来吸引了科研人员的强烈关注和广泛研究。具有空气孔的光纤由于其具有天然的流体管道而受到了极大的欢迎和关注,不过直接利用光纤同时导光和液体往往会导致输入输出端口的竞争问题。本项目中我们将主要研究一种基于微光纤-空芯光纤复合型的新型光纤微流控体系:将具有亚微米直径的微光纤绕在薄壁空芯光纤上,大的消逝场与空芯光纤表面微结构作用可以实现各种器件功能,同时穿透薄壁与空芯光纤内部的流体发生强烈的交互作用。在这种结构中,微流体通道与光通道自然结合与分离,输入输出耦合不再冲突;制备简单便利、可扩展性强、应用广泛。基于这样的体系,我们将主要研究和探索相关器件的加工制备技术、光与液体相互作用机理、多点多通道多参量检测技术以及在线式快速生化检测和可调谐器件等方面的应用。
项目执行期内按照项目计划,主要探索了微光纤-空芯光纤复合型微流控器件的制备技术,发展了微光纤-空芯光纤复合工艺,制备了若干关键器件,研究了光与液体相互作用,探索了多通道多点多参数检测,演示了相关器件在生化领域的在线检测应用和其他应用等。.在工艺方面,重点探索了微光纤与各类空芯光纤的复合集成技术与工艺,包括表面修饰、封装处理等;也探索了平面微流芯片加工工艺。.在器件方面,围绕着三维立体和一维共线两种几何体系,发展了一系列具有原创性的全光纤微流器件,同时也研制了若干硅基或聚合物平面集成的微流和柔性芯片。基于这些器件演示了待测物质的处理操控以及成分、温度、流速等多种物理化学参量的探测。此外基于相关工艺技术,发展了一系列光纤与二维材料集成的光机电器件。.在机理方面,重点研究了光物质作用增强机理,发展了若干提高光物质作用距离和强度的方法。.在应用方面,利用复合型光纤微流系统实现了基于拉曼信号的在线监测系统,利用超小型化的光纤微流探针实现了极低剂量的生化检测和单细胞检测等应用。.项目执行期共发表论文53篇,专著章节1篇,申请发明专利22项。包括Light Sci. Appl. 1篇,Prog. Quant. Electron. 1篇,ACS Photon. 1篇,Nanoscale 1篇, Adv. Electron. Mater. 1篇,Optica 1篇,Sens. Actuator B 1篇,Adv. Opt. Mater. 2篇,Adv. Mat. Technol. 1篇,Adv. Mat. 1篇, Lab Chip 3篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
双粗糙表面磨削过程微凸体曲率半径的影响分析
电沉积增材制造微镍柱的工艺研究
微咸水灌溉下砂层级配及覆砂厚度对土壤水盐运移的影响
拉锥空芯光纤的亚波长级微流控光学研究
高灵敏倏逝波光纤SERS探针及其微流控生物检测应用
基于特种空芯光子晶体光纤的光纤光栅理论及相应器件研究
荧光标记空芯光子晶体光纤阵列对多种重金属离子的在线检测