The present project is proposed based on the great demand in the field of information, national defense and aerospace, particularly, on the urgent requirement of ultra-precision optics in the modern advanced optical systems, such as lithography lenses, inertial confinement fusion systems, and synchrotron radiation light sources. Theoretical and experimental investigation will be performed aiming at solving a series of key scientific problems in ultra-precision optical manufacturing, such as the extraction of actual processing efficiency, the nonlinear modeling of removal function, and the manufacturing of X-ray grazing mirrors. Firstly, based on the manufacturing results, the inverse analysis of the actual manufacturing process will be carried out, the machining efficiency will be identified and compensated, and the manufacturing efficiency will be improved. Secondly, the spatial nonlinearity and time nonlinearity of the removal function will be analyzed, the precisely deterministic figuring process will be established by considering the nonlinearity, and the figuring accuracy will be improved. Thirdly, for the X-ray grazing mirrors, due to their sensitive error is not the height error but the slope error, an innovative figuring theory and technology based on the surface slope error will be accordingly established to solve the application-oriented problem. In summary, the proposed project will set up the deterministic figuring technique with high efficiency, ultra-precision and application-oriented by breaking the tough barrier in theory and technology. It will promote the development of optical manufacturing technology, and realize the efficient and stable figuring to ultra-precision optics. The relative research results will raise the national level in precision optical manufacturing.
本项目面向信息、国防、航天等领域高新技术的重大需求,以光刻物镜、惯性约束核聚变系统、同步辐射光源等现代先进光学系统对超精密光学元件的迫切需求为背景,针对实际加工效率辨识、去除函数非线性建模、X射线掠射镜加工等关键科学问题开展系统的理论与工艺研究。项目基于加工结果对实际加工过程进行逆分析,对去除函数进行辨识与补偿,提高加工效率;对去除函数的空间非线性和时间非线性进行分析与精确建模,建立非线性去除函数下的确定性修形工艺,提高加工精度;针对X射线掠射镜的敏感误差不是高度误差,而是斜率误差的特点,相应地建立了基于面形误差斜率的加工理论与工艺,解决面向应用的加工难题。通过关键理论与技术的突破,系统地建立高效率、高精度、面向应用的光学加工确定性修形理论与工艺,推动光学加工技术的发展,实现超精密光学元件的高效稳定加工,提升我国在超精密光学元件加工制造前沿领域的研究水平。
本项目面向信息、国防、航天等领域高新技术的重大需求,以光刻物镜、惯性约束核聚变系统、同步辐射光源等现代先进光学系统对超精密光学元件的迫切需求为背景,针对实际加工效率辨识、去除函数非线性建模、X射线掠射镜加工等关键科学问题开展系统的理论与工艺研究。项目基于加工结果对实际加工过程进行逆分析,对去除函数进行辨识与补偿,提高加工效率;对去除函数的空间非线性和时间非线性进行分析与精确建模,建立非线性去除函数下的确定性修形工艺,提高加工精度;针对X射线掠射镜的敏感误差不是高度误差,而是斜率误差的特点,相应地建立了基于面形误差斜率的加工理论与工艺,解决面向应用的加工难题。通过关键理论与技术的突破,系统地建立高效率、高精度、面向应用的光学加工确定性修形理论与工艺。项目提出了测量算子M,可以对测量输出建模,从而可以对加工、检测整个大闭环过程进行建模和分析。利用测量算子,可以建立辨识去除效率的模型,甚至还可以对加工前后两次测量的综合误差进行分离分析和评价。项目将复杂的去除函数非线性问题进行解耦,将去除函数的非线性分为空间非线性和时间非线性。针对去除函数随复杂面形变化的非线性,进行了空间非线性建模;针对去除函数随时间变化的非线性,进行了时间非线性建模。在驻留时间解算中对非线性进行补偿控制。解决了去除函数非线性的光学加工难题。项目结合了光滑延拓和高斯延拓两种方法的优点,提出了新的边缘延拓方法-光滑下降延拓,利用该方法可以在相对较短的时间内加工出最小的残差。这些工作大大丰富了确定性光学加工的理论,并进一步提升了确定性光学加工的工艺水平,使确定性光学加工更加确定!项目共发表论文8篇,其中SCI收录的6篇;申请专利3项;参加国内或国际学术会议3次;培养硕士研究生和博士研究生共计3名。项目完成了全部的计划研究内容,达到了预期的研究目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
农超对接模式中利益分配问题研究
拥堵路网交通流均衡分配模型
感应不均匀介质的琼斯矩阵
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
强光光学元件零缺陷加工理论及关键工艺研究
超精密切削加工光学表面的完整性理论和实验研究
光学非球面的磁流体超精密抛光工艺研究
光学玻璃超精密加工表层损伤的表征方法和测试技术