The research on soft artificial muscles using smart materials with inexpensive and environmentally properties is at the forefront of the field of soft robotics. It is of great significance to develop high-performance artificial muscles with eco-friendly property and low cost. Bacterial cellulose has received great attention due to its eco-friendly property, good biocompatibility and biodegradability, high mechanical stiffness, and ultrathin network structure. However, artificial muscles using bacterial cellulose have many disadvantages such as, fuzzy actuation mechanism, low bending deformation, small output force, slow response time, poor actuation durability, and a working environment. This project aims to reveal the actuation mechanism of artificial muscles using bacterial cellulose, and to develop eco-friendly high-performance artificial muscle based on bacterial cellulose. The fabrication process of artificial muscles including bacterial cellulose membranes and conducting electrodes will be explored. The proposed membranes and electrodes will show excellent electro-chemo-mechanical properties, such as, high ionic exchange capacities, high ionic conductivities, high specific capacitances, and excellent mechanical properties. The mathematical model will be established between the mechanical bending deformation and output voltage of artificial muscles using bacterial cellulose, and the self-sensing function of artificial muscles based on bacterial cellulose will be realized. A new idea will be proposed based on the actuation-sense integration of artificial muscles using bacterial cellulose. This research will explore various actuation-sense structures of artificial muscles and possible applications in soft robotics. The results of this project will provide important theoretical and technical support for soft actuation technologies and promote the development of soft robotics.
基于廉价环保型智能材料的柔性人工肌肉研究处于柔性机器人领域的前沿,发展环保、低成本、高性能柔性人工肌肉具有重要的意义。细菌纤维素具有环保可降解、高生物相容性、高机械强度、超精细网络结构等突出优势,然而现有细菌纤维素人工肌肉存在驱动机理模糊、机械输出性能小、响应速度慢和工作环境单一等问题。本项目以揭示细菌纤维素人工肌肉驱动机理为基础核心,提出基于功能性细菌纤维素的环保高性能人工肌肉构建的基本思想,探索该人工肌肉的多种制备工艺;建立细菌纤维素人工肌肉的机械变形和输出电压之间的数学模型,实现该人工肌肉的自传感功能;提出细菌纤维素人工肌肉的驱动-传感一体化的基本思想,探索该人工肌肉的多种驱动-传感结构及其在柔性机器人等方面的应用。本项目的研究成果将为柔性驱动技术提供重要的理论和技术支持,推动柔性机器人的发展。
电活性人工肌肉是一种新型智能材料,具有电刺激形变大、响应速度快、高能量密度比、柔性高、轻质及噪声低等优势,可用于仿生机器人、可穿戴电子设备、盲文显示以及微医疗器械等领域。本项目的研究目标是探究细菌纤维素人工肌肉的变形驱动机理、探索细菌纤维素人工肌肉的制备工艺及应用研究。本项目的主要研究内容包括:1)搭建实验测试平台,研究细菌纤维素肌肉的变形驱动机理及模型描述;2)结构可控细菌纤维素人工肌肉的构筑及其结构调控;3)开展基于细菌纤维素人工肌肉的多种仿生应用研究。本项目揭示了细菌纤维素人工肌肉的变形驱动机理,并建立了有效的数学模型;采用掺杂法、化学聚合法分别构筑了碳纳米管-羧化细菌纤维素型人工肌肉和聚吡咯-羧化细菌纤维素型人工肌肉;最后,开展了细菌纤维素人工肌肉在仿生应用等方面的研究。本项目发现多孔离子交换膜和交联复合型交换膜可以获得具有良好电化学机械特性的人工肌肉,并提出了相应的制备工艺。聚吡咯-羧化细菌纤维素型人工肌肉具有较大的弯曲应变(0.93%)、优异驱动稳定性(5小时连续工作能保持96%)、极低的驱动电压(<0.5V)、以及高达10Hz的宽频率带宽,这些特性主要源于其高表面积和孔隙率、较大的比电容、可调的机械性能以及离子液体中阳离子和阴离子与功能性羧化细菌纤维素和聚吡咯纳米粒子的强离子交联作用。本项目的研究成果对于促进柔性人工肌肉的发展具有重要的意义。经项目总结,目前已经在国内外知名学术期刊发表SCI论文11篇,获得国家授权专利5项,并培养研究生10名。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
钢筋混凝土带翼缘剪力墙破坏机理研究
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
人工肌肉群驱动的柔性仿生机械手臂构型与驱动机理研究
基于系统发育与功能性状结构探究南亚热带典型人工林土壤细菌群落构建机制
基于中空活性碳纳米纤维电极的IPMC人工肌肉执行器构建及其电驱动机制研究
细菌纤维素基人工胆管的制备及性能调控