Lysosomes are acidified organelles regulating degradation and metabolism within cells. Abnormality of lysosomal acidity results in cargo accumulation and severe human disorders, including neurodegenerative diseases and metabolic diseases. The mechanisms underlying acidification of lysosomes are, however, poorly understood. Using small-molecular natural compounds as probes, chemical biology provides unique approaches to reveal regulatory mechanisms of lysosomal acidification. Our preliminary studies have identified a group of natural compounds, namely LYs, which impairs lysosomal acidity and biosynthesis of phosphatidylinositol 4-phosphate (PI4P) significantly. Notably, additional complement of PI4P restores LY-22-impaired lysosomal acidification. Thus, our hypothesis is that natural compound LY-22 inhibits lysosomal acidification via interrupting PI4P biosynthesis within cells, resulting in autophagic dysfunction and accumulation of protein aggregates and lipid droplets. In this project, we plan to further investigate how these compounds function by identifying their target proteins, using a combination of approaches including genetic screen, protein-protein interactions, live-cell imaging, protein modifications, and chemical modification of compounds. This unique research will not only provide important novel insights into lysosomal acidification and homeostasis, but also reveal pathological mechanisms underlying lysosome-related human disorders.
溶酶体是负责细胞内物质降解和代谢调控的酸性细胞器,其酸化异常导致胞内物质堆积和人类疾病的发病。尽管人们对溶酶体功能的认识不断加强,但溶酶体酸化的机制还远未阐明。因此,揭示溶酶体酸化的调控机制是一个重要的科学问题。以小分子化合物为探针的研究不仅阐明溶酶体酸化调控的机制,并为相关疾病的治疗提供理论基础和潜在靶标。我们前期实验筛选到一类结构新颖的天然小分子LYs,其显著抑制溶酶体酸化,同时阻断磷脂酰肌醇四磷酸合成; 而外源补充磷脂酰肌醇四磷酸,可恢复LY-22损伤的溶酶体酸化。我们假说:天然小分子LY-22通过阻断磷脂酰肌醇四磷酸的合成,进而抑制溶酶体酸化和细胞自噬。本项目依托高通量化合物筛选平台,以小分子化合物为探针,结合遗传筛选、活细胞成像、蛋白质追踪定位、蛋白质修饰和相互作用等多种研究手段,阐明天然小分子抑制溶酶体酸化的作用机制,为揭示溶酶体相关疾病的发病提供新的理论依据。
溶酶体是细胞内负责物质降解和调控代谢的重要细胞器。其正常功能需要溶酶体内部酸性环境的维持。溶酶体质子泵v-ATPase在此环节中发挥重要功能。本项目旨在以小分子化合物为探针,结合细胞生物学和化学生物学等方法深入研究并阐明溶酶体酸化调控的新机制。我们在已开展的大量工作基础上,鉴定小分子化合物IN-10通过抑制高尔基体上的PI4K2a和PI4K3b,进而特异降低高尔基体上PI4P的含量,导致溶酶体质子泵亚基v-ATPase不能定位于溶酶体而是蓄积于高尔基体上,最终导致溶酶体酸化受到抑制、溶酶体降解功能受损。本项目不仅深入理解溶酶体酸化调控和溶酶体降解功能相关疾病的发病机理,同时为进一步治疗溶酶体相关疾病提供理论基础和治疗靶标
{{i.achievement_title}}
数据更新时间:2023-05-31
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
面向云工作流安全的任务调度方法
结核性胸膜炎分子及生化免疫学诊断研究进展
高压工况对天然气滤芯性能影响的实验研究
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
Vamp8磷酸化调控自噬体-溶酶体融合的分子机制
蛋白质磷酸化在乙烯促进小橡胶粒子合成天然橡胶中的作用
PKCε 磷酸化MIIP进而通过抑制RelA去乙酰化促进结直肠癌转移
小分子多肽靶向抑制DNA-PKcs自主磷酸化增加肿瘤放射敏感性及其机制研究