The construction of disaster virtual geographic environment is very significant for realizing the expression and sharing of disaster knowledge and assisting in disaster simulation, analysis, prediction and planning decision-making. Because the disaster scene has to deal with different user preferences, information needs and application terminals at different stages of emergency disposal, traditional visualization methods maybe result in some problems including low modeling efficiency, poor adaptive ability, limited application and non-professional standardization. This project will focus on research an adaptive visualization method of disaster scene based on task-driven that aims to solve the above problems. Firstly, domain ontology construction and semantic modeling of the disaster scene are researched to support to create concept disaster scene for adaptive user preferences. Secondly, rapid fusion and suitable expression methods of emergency disaster scene are discussed to adaptive disaster information needs. Thirdly, scene organization optimization, adaptive analysis and dynamic scheduling methods are design to support the high-efficient rendering of disaster scenes on diversified terminals. The purpose of this project aims to improve the reusability of disaster scene modeling knowledge, reduce the complexity and difficulty of modeling operation, and extend the adaptive visualization ability and application occasion. It is expected that the research results will have important theoretical and practical value for the comprehensive analysis of disaster prevention and mitigation work in China.
构建灾害虚拟地理环境对实现灾害知识的表达与共享,辅助进行灾害模拟、分析、预测与规划决策具有十分重要的意义。由于灾害场景在不同阶段需要处理不同的用户偏好、信息需求和终端设备,传统可视化方法会导致建模效率不高、自适应能力差、应用受限、不符合专业规范要求等问题。针对上述问题,本项目拟开展任务驱动的灾害场景自适应可视化方法研究。先通过研究灾害场景领域本体构建及语义建模方法,进行自适应多类型用户偏好的灾害概念场景随需构建;然后探讨场景快速融合建模及真实感与符号化协同机制,建立灾害场景适宜性表达方法;进而设计场景对象优化组织、适应性分析与动态调度方法,实现自适应多样化终端的场景高效可视化绘制。本项目旨在提高灾害场景建模知识的可重用性,降低建模操作的复杂度和难度,拓展场景可视化的自适应能力和应用场合。预期研究成果将对我国综合防灾减灾救灾具有重要的理论意义与实践价值。
构建灾害虚拟地理环境对实现灾害知识的表达与共享,辅助进行灾害模拟、分析、预测与规划决策具有十分重要的意义。由于灾害场景在不同阶段需要处理不同的用户偏好、信息需求和终端设备,传统可视化方法会导致建模效率不高、自适应能力差、应用受限、不符合专业规范要求等问题。针对上述问题,本项目开展了任务驱动的灾害场景自适应可视化方法研究,首先建立了灾害场景领域本体构建及语义建模方法,支持了自适应多类型用户偏好的灾害概念场景随需构建;然后构建了场景快速融合建模及真实感与符号化协同机制,建立了灾害场景适宜性表达方法;进而设计了场景对象优化组织、适应性分析与动态调度方法,实现自适应多样化终端的场景高效可视化绘制。项目共发表学术论文33篇,其中SCI 23篇,EI 10篇,申请专利4项、软著2项,参与国内外学术会议17次,编写学术著作1部,培养博士毕业生4名、硕士毕业生8名,获取省部级科研奖项4次。本项目成果有助于提高灾害场景建模知识的可重用性,降低建模操作的复杂度和难度,拓展场景可视化的自适应能力和应用场合,对我国综合防灾减灾救灾具有重要的理论意义与实践价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
面向云工作流安全的任务调度方法
秦巴山区地质灾害发育规律研究——以镇巴县幅为例
基于结构滤波器的伺服系统谐振抑制
任务驱动的可视化方法自动选择
面向灾害应急任务的时空数据智能聚合服务方法
基于动态多模态多任务学习的视觉场景理解方法研究
基于自顶向下任务驱动与选择性反馈的交通场景感知与实现技术