Ultrathin nanomaterials are basic building blocks with potential applications in future optoelectronic devices, high performance batteries and high efficiency catalysts, due to their super-high surface activity, excellent optical and electrical properties, and mechanical flexibility. Therefore, it is of significance to study the correlation between the morphologies and the properties of ultrathin nanomaterials, as well as fabrication of single layer nanomembranes which consisted of ultrathin nanomaterials self-assembled microstructures, for future application of these materials. This project aims to manipulate ultrathin nanomaterials by means of interfacial force which originated from both the polymer and emulsion system. We will also achieve the clarification of the mechanism for interfacial self-assembly of these ultrathin nanomaterials. Based on this mechanism, the diameter, the size of rim, and the nanoparticles doped hetero-nanostructures of the self-assembled nanoring will be precisely controlled. The correlation between morphologies and properties of the synthesized ring will also be studied. Furthermore, free-standing nanomembrane will be fabricated from the single layer nanorings arrays, and their electronic, optical and mechanical properties will be tunable by varying the morphologies of the nanorings. Finally, a highly sensitive pressure sensor will be fabricated. Overall, this project will provide the theoretical basis and scientific data for their potential applications including high sensitive pressure sensors using ultrathin nanomaterials.
超细纳米材料由于其超高的表面活性,优异的光学、电学性质以及柔韧性,使得这些超细纳米材料作为基本单元在光电器件,高性能电池以及高效率催化等领域具有广阔的应用前景。因此,研究超细纳米材料自组装微结构形貌与其性质的关联,构建超细纳米材料自组装微结构的单层薄膜,对未来应用这些超细纳米材料有着重要意义。本项目拟在聚合物,乳液这二个体系中,通过调控界面作用力来实现对超细纳米材料自组装微结构形貌的控制,阐明界面自组装超细纳米材料的机理;在此基础上实现超细纳米线组装的纳米环的直径,边缘的厚度以及掺杂纳米粒子的杂化结构的精确调控;同时研究此纳米环形貌与其物理化学性质之间的关联规律;并进一步以此纳米环为结构单元来构建单层自支持薄膜,实现对薄膜电学、光学、机械强度的调控,并尝试应用于超灵敏压力传感器。为探索超细纳米材料的应用提供科学依据和理论基础。
超细纳米材料由于其独特小尺寸效应,及优越的物理化学等性质,使得其在各领域中有着广泛的应用潜力。因此,以超细纳米材料为构建单元的自组装微结构的形貌控制,对于实现其在实际中,尤其是在光电、催化等领域中的应用有着重要意义。本研究首先从超细金纳米线的类聚合性质出发,系统的研究了超细金纳米线本身的长度与其类聚合物性质的关系。提出了超细纳米线的“二相性”概念,重点揭示了此“二相性”在组装过程中的对组装微结构的影响,并提供了一种制备各项异性杂化结构新思路,即将类聚合物的长纳米线与胶体纳米粒子性质的短纳米线共组装,得到金纳米项链、纳米戒指等结构。利用超细纳米线的类聚合物特性,利用经典的聚合物组装方法“呼吸图案法”在各种基底上制备了蜂窝状纳米薄膜,并探索了此薄膜在透明导电电极领域的应用。基于超细金纳米线,我们将其与铜纳米线组装,利用Au/Cu之间的置换反应,制备了Cu/Cuo为主干,金纳米线为分支的多支状一维线结构。此结构有着增强的电化学催化活性,可用于体外检测葡萄糖浓度。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
基于LASSO-SVMR模型城市生活需水量的预测
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
超嗜热嗜压古菌Pyrococcus yayanosii中多模块基因组岛PYG1的功能和相关适应性研究
层状组装自支持膜的制备与功能
胶体自催化组装制备超细空心镍球粉末的研究
基于单层自组装膜构建的纳米电分析化学新体系的研究
具有自移动吸附功能的超分子通道膜构建基础研究