Ostrich (Struthio camelus) leg-foot locomotion system has the synergetic efficient and steady locomotor characteristics adapting to loose and soft ground. From aspect of the biological assemble, the synergetic locomotor strategy and the actuating mode of ostrich leg and foot, combined with the loose and soft locomotor environment, the biological assemble features of leg and foot, the light weight and high strength characters of bones, the resilient and energy-stored mechanism of joints, the synergetic actuation and control of muscles, and the variational laws of the leg-foot synergetic kinematics and mechanics were studied. Based on the above analysis, the locomotor mechanism and main influencing factors of the large striding, the swing with high frequency, and the vertical and lateral steady locomotion of ostrich leg-foot synergetic adapting to loose and soft ground were obtained. The increase of walking high efficiency and steady characteristics was regarded as the study objective. Ostrich leg-foot locomotion system was treated as the biological prototype. Based on the high efficient and steady locomotor mechanism of ostrich leg-foot synergetic adapting to loose and soft ground, and adopting the technology of engineering bionics, the key problems of the structural design and assemble, the locomotor planning and control, and the actuating mode of joints of walking mechanical leg adapting to loose and soft ground were solved. The design idea of bionic walking mechanical leg with the rigid and flexible combination, the macroscopic and microscopic combination, and the dynamic and static combination was used. The project will provide the important theoretical foundation and research method for studying bionic legged robot with high performance walking on the loose and soft ground environment, including desert, gobi, desertification zone, seabeach, lunar surface and mars surface. Moreover, this research has the important significance for the in-depth study of the theory and the technology of bionic walking machine on loose and soft ground.
本项目瞄准鸵鸟腿足协同高效平稳适应松软地面运动特性,从鸵鸟腿足的生物组装、协同运动策略及驱动方式角度,结合松软地面运动环境,通过分析鸵鸟腿足生物组装特征、骨骼轻量高强特性、关节回弹储能机理、腿部肌肉协调驱动与控制以及腿足协同运动学和力学变化规律,研究鸵鸟腿足适应松软地面协同跨步、高频摆动以及垂侧向平稳运动机理及主要影响因素。同时,以提高行走高效性与平稳性为研究目标,将鸵鸟腿足运动系统作为生物原型,基于鸵鸟腿足协同适应松软地面高效平稳运动机制,采用工程仿生学技术,并通过刚柔混合、宏微结合及动静融合的仿生步行机械腿设计理念,解决适应于松软地面步行机械腿的结构设计组装、运动规划与控制及关节驱动方式关键问题。本项目将为沙漠、戈壁、沙化地带、海滩、月球及火星等松软地面环境中的高性能仿生腿式步行机器人研究提供重要理论依据和研究方法,对于松软地面机械仿生行走理论与技术深入研究具有重要意义。
非洲鸵鸟与人类在身高、体重、肢体数量及运动方式方面极其相似,它是沙地环境中现存最大最重、奔跑速度最快的两条腿动物。基于鸵鸟腿足优异运动性能,研制高性能仿生双足移动机器人,代替人类在极端地面环境执行特殊任务具有重要意义。从鸵鸟腿足生物组装、协同运动策略及驱动方式角度,结合松软地面运动环境,给出了鸵鸟腿足骨骼-肌肉-肌腱组装方式,分析了软硬地面鸵鸟足底动态压力分布规律,研究了鸵鸟腿足储能减振机理,确定了鸵鸟腿跗骨间关节被动回弹特征,解析了鸵鸟腿跗跖骨轻量化高承载性能,揭示了鸵鸟腿-关节-足趾运动协调和节能运动机制。同时,以鸵鸟足垫及永久离地跖趾关节为仿生原型,研制了仿生缓冲减振机械足;基于鸵鸟足趾运动姿态,研制了具有自适应变构功能的仿生越沙足;基于鸵鸟跗骨间关节生物组装结构特征,研制了绳索驱动仿生柔顺关节;基于鸵鸟跗骨间关节结构和关节窝曲面构造特征,研制了仿生缓震节能关节;基于鸵鸟后肢生物运动学规律,研制了仿生节能减振机械腿,并在该机械腿结构基础上,为了提高仿生机器腿性能,尤其使机械腿足适应沙地环境高效行走功能需要,研制了仿生腱骨协同越沙机械腿;最后,基于鸵鸟后肢整体生物功能特征,研制了自主适应地面仿鸵鸟双足机器人。本项目研究成果有望未来在地面沙漠环境的军事、旅游及探矿移动车辆或平台,以及月球/火星深空巡视探测机器人和载人深空探测辅助机器人领域获得广泛应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
高效节能仿生步行腿的生物力学原理与关键技术
基于生物张拉原理的节能步行腿仿生关键技术
松软地面仿生机械的理论与关键技术研究
仿生肌肉-骨骼结构机械腿变刚度调控机理与控制研究