本项目将致力于研究概率统计领域中的若干自正则化极限定理。在前人工作的基础上,并结合我们已有的研究成果,我们将重点探讨一般状态空间的Markov随机游动的自正则化极限定理,以及在常见的统计模型中存在的自正则化极限定理。在探讨的方法上,当随机变量的方差存在时,我们将采用核密度估计等方法构造出序列渐近方差的估计量;当方差不存在时,我们将采用截尾的方法先计算出古典极限定理中的正则化因子,再构造出其估计量作为自正则化因子。由于自正则化的结论较相应的古典形式的结论在形式上更加简洁、所需的矩条件更弱,因此在概率论中具有重要的理论意义。此外,在实际应用中样本的分布通常是未知的,其方差自然也是未知的;且常见的统计模型中有不少统计量都可以表示为自正则化部分和的函数形式,所以关于自正则化极限理论的研究在统计中也具有较强的应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
面向云工作流安全的任务调度方法
Optimal Output Feedback Control for Discrete-time Markov Jump Linear System with Input Delay and Packet Losses
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
自正则化极限定理
金融风险概率模型中的极限定理
应用概率领域中的极限定理
关于自正则极限理论的研究