Carbon-based functional materials have shown broad applications in the areas of chemistry, materials, energy, environment, biology, etc., due to their unique physical and chemical properties. The regulations of their structure and composition are essential for the real application of carbon-based functional materials. Based on the development trend to precise of chemistry and the excellent self-assembly property of polydopamine, the project proposes the design of "function orient---molecular design---precise regulation---performance optimization" framework. A series of novel dopamine derivatives are developed through the introduction of functional groups such as sulfhydryl and pyridinic N into dopamine to achieve the precise regulation of reaction process and self-assembly for polydopamine derivatives by precise regulation on covalent bond and non-covalent bond, facilitating the development of carbon precursors with excellent self-assembly properties. Moreover, the regulations of structure and composition on the corresponding carbon-based functional materials could be achieved with the aid of precise control of basement structure, resulting in the achievement of high effective applications in energy storage and conversion, biosensor, chemical catalysis, etc. The influences of the structure of dopamine derivatives on properties of carbon precursors and performance of carbon-based functional materials will be systemically studied, thereby revealing the prevalent rules of precise regulation on carbon-based functional materials. We envision that this proposal has great significance for developing carbon-based functional materials, and contributes to the development of chemistry, materials, energy, and other interdisciplinaries.
碳功能材料因其奇特的物化性质目前在化学、材料、能源、环境及生物等领域显示出广阔的应用前景,其结构和组分调控是碳功能材料走向应用的关键技术和重要的前提条件。基于化学科学 “精准化”的发展趋势及聚多巴胺优异的自组装性能,本课题拟设计“功能导向—分子设计—精准调控—性能优化”的研究体系,通过设计和合成系列全新的类多巴胺分子,引入功能性基团---巯基和吡啶氮,借助共价键和非共价键精准控制手段,实现聚类多巴胺反应过程及自组装行为的精准调控,为开发优异自组装性能的碳前驱体提供理论支撑;再结合基底结构精准控制来实现碳功能材料结构和组分的精准调控,进而实现在高效能源存储与转换、生物传感与化学催化等领域的应用;系统研究类多巴胺分子结构对碳前驱体性质及碳功能材料性能的影响,揭示实现碳功能材料“精准化”调控的普适性规律,对于碳功能材料的发展和应用具有重要科学意义,并推动化学、材料和能源及其相关交叉学科发展。
本项目结合材料学、电化学、分析化学和生物医学等多学科前沿进展,系统研究类多巴胺分子结构对碳前驱体性质及碳功能材料性能的影响,揭示实现碳功能材料“精准化”调控的普适性规律。设计“功能导向—分子设计—精准调控—性能优化”的研究体系,合成全新的类多巴胺分子,引入功能性基团---巯基和吡啶氮,借助共价键和非共价键精准控制手段,实现聚类多巴胺反应过程及自组装行为的精准调控,开发优异自组装性能的碳材料,如具有协同催化作用的磁性可回收纳米催化剂。通过基底结构精准控制来实现碳功能材料结构和组分的精准调控,进而实现在高效能源存储与转换、生物传感与化学催化等领域的应用,如在活细胞和组织样本中检测生物标志物的柔性电极。本项目为开发碳功能材料提供了全新思路,对其在新型能源、催化和临床分析等领域发展和应用具有广泛的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
Notch-Myc通路在T细胞型急性淋巴细胞白血病PI3K/mTOR双重抑制剂耐药中的作用及机制研究
基于儿茶酚胺自聚对碳材料的功能化及分析应用
聚多巴胺一维纳米材料的结构调控与光电性质研究
钯催化合成含类石墨化结构单元的树型聚苯类功能材料
基于图聚类的全脑功能分割研究