The application of wireless sensor under the extreme conditions urgently needs the strong support of simultaneous wireless information and power transfer (SWIPT) technology, and such applications are represented by major national needs such as typhoon detection. However, the existing SWIPT models are based on the premise that the spatial characteristics of source devices and sensor nodes are relatively fixed. Therefore, under the extreme conditions, simultaneous change of sensor posture and position will reduce the performance of information transmission and power transmission. Thus, this project intends to establish a theoretical model for the change of the SWIPT capacity of dynamic nodes with space, explore the coupling law of SWIPT characteristics between nodes position and posture, study the power efficiency characteristics of nodes between their position and posture under the boundary conditions of performance requirements, overcome collaborative optimization control technology for nodes information and power transfer under the extreme conditions. At the same time, SWIPT network model would be designed and validated under the extreme conditions. Finally, in this project, some key scientific problems would be solved, such as SWIPT network theoretical model, mapping relation of power efficiency characteristics and approach of collaborative optimization control under the extreme conditions. This will be the first to be validated in major applications of typhoon detection.
面向台风探测等国家重大需求的极端条件下无线传感器的应用,急需无线携能通信技术对其有力支撑,然而现有无线携能通信网络模型的研究均以源端设备和传感器节点的空间特征相对固定为前提,无法克服极端条件下传感器姿态和位置同时变化带来的传能传信性能劣化的影响。因此,本项目拟建立传感器动态节点携能通信能力随空间特征变化的理论模型,探索节点位置及姿态与携能通信特性的耦合规律;研究传能传信性能需求边界条件下节点能效特性与位置及姿态的映射关系;攻克极端条件下节点传信与传能协同优化控制技术,实现极端条件下携能通信网络模型的设计与验证。项目将解决极端条件下无线传感器携能通信网络的理论模型、能耗特征映射关系、协同优化控制方法等关键科学问题,将首次在台风探测重大应用中得以验证。
无线携能通信在实现无线设备交互的同时也能够传输信号和能量,所以特别适合于恶劣环境中无线设备的供能与控制。.然而,现有研究多集中在传感器节点姿态或位置单一维度因素变化时对无线携能通信能力的影响,难以适应台风探测等极端条件下多维度姿态和位置变化的实际需求。.因此,本项目面向台风探测等极端条件无线携能通信应用场景。首先,针对准动态节点与动态节点开展理论研究,建立了携能通信能力与相对空间关系的基础模型,研究了不同场景下节点的传能、传信能力与相对角度、相对方向、相对运动速度、相对距离的对应关系;.之后,基于携能通信能力与空间关系的理论模型,结合台风等恶劣气象条件导致的信号衰落影响,确定了源端设备及动态传感器节点的性能需求边界条件,建立了无线传感器节点能耗特性模型,量化了能耗与空间距离、姿态、传信需求等特征的映射关系;.最后,建立了节点能量存储及损失机制下的能量模型,提出了动态节点基于传输能耗及节点剩余能量的功率控制策略,基于GPS和MIMU技术构建无线传感器动态节点网络模型,探索出动态节点中继转化路径及节能方法,结合源端设备的最优位置控制模型,实现了传信与传能的协同优化控制。.项目研究成果对于极端不定状态无线传感器携能通信能力的提升,具有重要的理论意义,特别是对于无线传感器网络在台风探测等极端条件下的应用,将产生积极的推动作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
超声无线输能通道的PSPICE等效电路研究
结直肠癌免疫治疗的多模态影像及分子影像评估
智能煤矿建设路线与工程实践
二维FM系统的同时故障检测与控制
Notch-Myc通路在T细胞型急性淋巴细胞白血病PI3K/mTOR双重抑制剂耐药中的作用及机制研究
基于携能通信的无线传感器网络能效优化研究
面向无线携能网络的分布式编码协作通信机制研究
超密集异构蜂窝网络中绿色无线携能通信关键技术研究
异构云无线接入网中面向无线携能通信的干扰管理技术研究