With the large scale and high precision of radio telescope, the importance of its healthy monitoring and maintenance is improved. The main reflector system of Five hundred meter Aperture Spherical radio Telescope(FAST) include many non standard equipment and ultra specification structures, while most structures are uniform distributed surface of the 500 meter caliber spherical crown hill, the maintenance difficulty is very hard. However, it is very necessary to research a visualization monitoring and maintenance decision support system before the completion of FAST project. .Combined with the existing achievement of FAST, the foundation would like to use the methods of monitoring data processing, method bases of maintenance decision support system, and system visualization. Firstly, monitoring data will be analyzed by data mining and statistical technology. And key structure life analysis modules are developed in the healthy monitoring software. Secondly, the maintenance decision method bases of main reflector system are established, based on the design data of key structures and investigation of maintenance experiences for big radio telescopes. Finally, on the basis of constructed Building Information Modeling of FAST, the visualization of monitoring and maintenance decision support system can be realized..On one hand, this research will improve the running and maintenance efficiency of main reflector system for FAST, on the other hand, it has reference significance for running and maintenance of similar large-scale structures.
射电望远镜的大型化、高精度发展,提升了其健康监测和维护的重要性。FAST望远镜主动反射面系统包括很多非标设备和超规范结构,且大部分结构均分布于500m口径球冠状山体表面,维护难度较大。因此,在其即将建设完工之际,有必要研究一种可视化的健康监测与维护决策支持系统。.结合FAST现有研究成果,拟采用健康监测数据处理、维护决策支持方法库及可视化的解决方案。首先,运用数据挖掘及数理统计技术对实时监测数据进行分析,在现有的监测软件中开发关键部件的剩余寿命分析模块;其次,根据关键部件的前期设计结果并调研国内外大射电望远镜维护经验,建立FAST主动反射面系统的维护决策支持方法库;最后,设计合理的接口,结合已建成的FAST建筑信息模型,实现监测数据及处理结果与维护决策支持方法库的可视化。.本课题的研究,能有效提升FAST主动反射面系统的运行及维护效率,对类似大型建筑或结构的运行及维护有一定的借鉴意义。
500米口径球面射电望远镜是中国重大科学基础设施之一,是射电天文学、深空探测通讯的最前沿装备,于2016年9月在贵州平塘落成启用在FAST设计之初,为确保其安全可靠运行,同步规划设计了实时健康监测系统。随着FAST的投入使用,积累了大量系统运行、环境变量及健康监测等数据。.项目通过对健康监测数据处理、维护决策支持方法库及可视化分析的方案,提升FAST主动反射面系统的运行及维护效率。主要研究成果为:运用数据挖掘及数理统计技术对实时监测数据进行分析,在现有的监测软件中开发了关键部件的剩余寿命分析模块;根据关键部件的前期设计结果并调研国内外大射电望远镜维护经验,建立了FAST主动反射面系统的维护决策支持方法库;设计合理的接口,结合已建成的FAST建筑信息模型,实现监测数据及处理结果与维护决策支持方法库的可视化。.对FAST望远镜健康数据进行可视化效果呈现,发掘数据隐含规律,从而做出运行维护的决策,确保FAST的安全稳定运行,对保障科学观测有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
论大数据环境对情报学发展的影响
基于LASSO-SVMR模型城市生活需水量的预测
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
基于分形维数和支持向量机的串联电弧故障诊断方法
FAST主动反射面损伤预警及安全评估系统研究
FAST主动反射面变位测量研究
巨型望远镜(FAST)主动反射面结构安全及其电性能优化关键技术
基于深度学习的FAST主动反射面优化研究