The privacy-preserving multiparty data fusion technology is the core driving force for win-win cooperation among enterprises and the development of China's sharing economy. How to perceive the situation of privacy evolution in the process of data fusion, integrate the multidimensional requirements of privacy protection efficiency and data availability into the consistency consideration, and realize the personalized sharing of information under the control of information security has become an important issue that can not be avoided in the practice of data multiparty sharing..This project points out the shortcomings of the existing privacy protection technologies in privacy insight computing, privacy-targeted protection, and adversarial privacy protection. To address these problems, we focus of three important issues including the basic theory and quantitative evaluation of privacy insight computing, the optimization and adjustment of data privacy and usability by the privacy-targeted protection technology, and the adversarial privacy protection mechanism and algorithm for incremental dynamic fusion of multi-source data. We intent to make several breakthroughs in theoretical models and key algorithms. Further, we plan to build a verification system with medical data security fusion as a demonstration, and verify the effectiveness of our technologies based on real medical big data..The project aims to provide fundamental theoretical support as well as key technology innovations to the development of secure and effective data-sharing techniques among enterprises.
多源数据安全融合技术是企业间合作共赢、我国共享经济发展的核心助力。如何在数据融合的过程中感知隐私演化的态势、将隐私保护效能与数据可用性等多维需求纳入一致性考量,在信息安全可控下实现信息的个性化共享,已成为数据多方共享实践不可回避的重要课题。本项目指出已有隐私保护技术在隐私演化洞察、隐私靶向保护、隐私对抗保护三方面的不足,并以此为突破点,拟开展多源数据融合中隐私洞察计算基础理论与量化评估、数据隐私性与可用性的内在联系及隐私靶向技术对其的优化调节、面向多源数据增量动态融合的对抗式隐私保护攻防机制与算法三方面关键技术的研究。随着上述关键技术的突破,将构建以医疗数据安全融合为示范的验证系统,并基于真实的医疗大数据对关键技术进行验证。本项目旨在为企业间数据安全共享提供必要的基本理论和技术支撑。
多源数据安全融合技术是企业间合作共赢、我国共享经济发展的核心助力。如何在数据融合的过程中感知隐私演化的态势、将隐私保护效能与数据可用性等多维需求纳入一致性考量,在信息安全可控下实现信息的个性化共享,已成为数据多方共享实践不可回避的重要课题。本项目指出已有隐私保护技术在隐私演化洞察、隐私靶向保护、隐私对抗保护三方面的不足,并以此为突破点,开展多源数据融合中隐私洞察计算基础理论与量化评估、数据隐私性与可用性的内在联系及隐私靶向技术对其的优化调节、面向多源数据增量动态融合的对抗式隐私保护攻防机制与算法三方面关键技术的研究。构建了多源融合的隐私洞察计算模型,为研究数据高可用性的隐私靶向保护及数据增量融合隐私保护技术提供理论指导;提出一套普适的启发式隐私策略组合优化技术,揭示隐私保护粒度、数据可用性、信息共享精度之间的内在联系,为进一步研究数据高可用性的隐私靶向保护技术提供支撑;并提出抗大数据分析的对抗式增量数据隐私保护机制,阐明隐私与可共享信息间的转换机理,为大数据融合隐私保护与信息安全共享问题的解决提供新的靶点。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
基于多模态信息特征融合的犯罪预测算法研究
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
原发性干燥综合征的靶向治疗药物研究进展
海量数据分析应用场景下具有隐私保护的数据聚合技术研究
多源数据机器学习中的隐私保护技术研究
大数据环境下的数据查询隐私保护技术研究
基于隐私保护的分布式数据流异常检测模型融合研究