3-Hydroxypropionic acid is considered as an important building block either for organic synthesis or high performance polymers. In our previous work, a two-step process was developed for 3-hydroxypropionic acid biosynthesis from glycerol using Klebsiella pneumonia and Gluconobacter oxydans. In the first step, glycerol was fermented by K. pneumonia to form 1,3-propanediol. In the second step, 1,3-propanediol was converted into 3-hydroxypropionic acid by G. oxydans. Results showed that the formation rate and conversion ratio of 3-hydroxypropionic acid from 1,3-propanediol in the second step were the most important factors limiting the yield of 3-hydroxypropionic acid. Improvement of the process is difficult because the mechanism of 1,3-propanediol metabolic in G. oxydans remains unclear. This project aims to reveal the 3-hydroxypropionic acid and the by-product formation pathways in G. oxydans by enzymology analysis, gene-knockouts and genetic complements. In the work, the genes coding the enzymes involved in the metabolism of 1,3-propanediol will be screened by bioinformatics analysis. Then the genes will be cloned and expressed in E. coli. Gene- knockout and genetic complements will be carried out in G. oxydans, to investigate the function of the genes in 3-hydroxypropionic acid or by-products formation. Based on the results, a genetic engineering G. oxydans used in the two-step process will be constructed for efficiently convert glycerol into 3-hydroxypropionic acid. In addition, the results will afford some new enzymes with high activity on conversion 3-hydroxypropionaldehyde to 3-hydroxypropionic acid, that is important for high-titer 3-hydroxypropionci production.
3-羟基丙酸是一种重要的平台化合物,生物法制备具有良好的经济和社会效益。我们前期利用克雷伯杆菌和氧化葡萄糖酸杆菌构建了从甘油到1,3-丙二醇再到3-羟基丙酸的两段生产体系,发现氧化葡萄糖酸杆菌转化1,3-丙二醇到3-羟基丙酸的速率和转化率制约着产能的提高。体系优化却因对转化机制缺乏了解而无法深入。因此,本项目将对氧化葡萄糖酸杆菌1,3-丙二醇代谢途径进行解析:通过生物信息学分析,筛选基因组中与1,3-丙二醇代谢可能相关的酶基因;通过基因产物酶学性质研究,基因的敲除、回补实验,确定候选酶在途径中的功能。最终明确1,3-丙二醇生成3-羟基丙酸的关键酶,确定副产物丙烯酸的生成路径和关键酶。以此为理论依据,对1,3-丙二醇途径进行改造,改造菌用于两段体系,有望实现从甘油到3-羟基丙酸的高效转化。项目还可能发掘催化3-羟基丙醛到3-羟基丙酸的高活性酶,为3-羟基丙酸高产途径的构建提供重要素材。
3-羟基丙酸是一种重要的平台化合物。我们前期构建了双菌两步转化体系,本项目即对其中第二步,氧化葡萄糖酸杆菌(G. oxydans)转化1,3-丙二醇(1,3-PDO)生成3-羟基丙酸过程进行解析,主要研究内容和结果如下:.1.利用HPLC、LC-MS及GC-MS对G. oxydans转化1,3-PDO过程进行分析,确定主要产物为3-羟基丙酸,副产物为丙烯酸,中间代谢物为丙烯醛。.2. 根据代谢物分析推测产物、副产物的代谢途径。利用RAST server对G. oxydans 基因组进行分析及功能注释,筛选与3-羟基丙酸生成可能相关的酶基因15个,与丙烯酸生成相关的脱水酶基因20个,氧化还原酶15个。.3.对G.oxydans细胞进行紫外诱变,获得3-羟基丙酸/丙烯酸突变菌2株。利用RT-qPCR对突变株候选酶基因进行转录水平分析,发现膜定位的乙醇脱氢酶大亚基(adhA),小亚基(adhB)及膜定位的乙醛脱氢酶(mALDH),其mRNA 表达量与3-羟基丙酸生成相关。将adhA及aldh 进行基因敲除和回补实验,确定G. oxydans催化1,3-PDO生成3-羟基丙酸的主要酶为膜结合的乙醇脱氢酶和乙醛脱氢酶。.4.利用超速离心技术将G. oxydans 细胞组分分离。各组分分别转化1,3-PDO,检测丙烯酸产量,发现丙烯酸途径酶定位于细胞膜上,从而缩小备选基因范围。备选基因mRNA定量分析及基因敲除、回补实验最终确定3-羟基酰基脱水酶(3-HDD)、3-羟基癸酰基脱水酶(3-HAD)是G. oxydans转化1,3-PDO生成丙烯酸的关键酶。.5.构建乙醇脱氢酶强化菌、乙醛脱氢酶强化菌、3-羟基酰基脱水酶和3-羟基癸酰基脱水酶基因双敲除菌、脱水酶双敲除并乙醛脱氢酶强化菌。分别转化1,3-PDO,获得3-羟基丙酸产量最高菌G.oxydans DSM2003-2/△3had/△3hdd/aldh。将其应用于双菌两步体系,利用甘油产3-羟基丙酸,3-羟基丙酸产量和转化速效率均有提高。.6. 将G. oxydans的酰基脱水酶基因3had/3hdd和克雷伯杆菌来源的二醇脱水酶基因dhaB 共同导入 E.coli BL21,构建了丙烯酸全生物法合成新途径。摇瓶实验中,工程菌可利用甘油生成丙烯酸124 mg/L。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
大肠杆菌微氧产3-羟基丙酸代谢工程研究
光合玫瑰菌3-羟基丙酸循环固碳途径的分子机制
新材料聚3-羟基丙酸信号工程菌构建及其代谢流逻辑切换
盐单胞菌中利用廉价碳源合成3-羟基丙酸代谢通路的构建及定向进化