Porous graphene-based nanocomposite can achieve a variety of electromagnetic wave loss synergy effects and good impedance matching,as well as light weight and high temperature resistance characteristics, etc. It is an extremely promising application of composite wave absorbing material. However, the traditional manufacturing process is complicated,the chemical reaction conditions are very strict, and it is difficult to flexible preparation of complex structures. Therefore, the proposal creatively proposes to apply the photo-curing 3D printing technology to realize the precise control of absorbing structures and the regulation of mechanical properties through topology optimization and multi-functional coupling design to create porous characteristics (cell type, porosity, aperture, etc.) and through RGO-Fe3O4 composition adjustment and gradient structure to achieve multiple electromagnetic wave loss synergies and good impedance matching to further meet the wave absorbing performance. In order to solve the key material and structural fundamental issues for realizing this innovative idea, the research focuses on “evolution and regulation of the filling rate, microstructure, dispersion, interface combinations of nano-particles in the pore”, and “dual function regulation mechanism on wave absorbing and mechanical loading of material composition and porous structure” to reveal the influence law and its modelling expression of material-structure-absorbance/load bearing integration. The research is expected to obtain original research achievements in terms of influence mechanism of graphene composites on its mechanical/wave absorption properties, and realize the integration of function-structure of lightweight, high-performance graphene-based nanocomposites on the basis of weight reduction and efficiency enhancement, which has important theoretical significance and engineering value.
多孔石墨烯复合材料可实现多种损耗协同效应和良好的阻抗匹配,兼具轻质和耐高温等特性,是极具应用前景的吸波材料。但传统制备方法工艺复杂、化学反应条件严格、难以灵活制备复杂结构。因此,课题利用光固化3D打印技术,通过拓扑优化和多功能耦合设计多孔特性(单元类型、孔隙率、孔径)实现对吸波结构的精准控制和力学性能的调控;通过RGO-Fe3O4组分设计和梯度结构实现多种损耗协同效应和良好的阻抗匹配以满足吸波性能。为解决实现该创新思路的关键材料和结构基础科学问题,重点研究孔道中纳米粒子充填率、微观结构、分散性、界面结合的演变与调控,材料组分和多孔结构对吸波和承载双重功能的调控机制,揭示材料-结构-吸波/承载一体化影响规律及模型化表达。研究有望在石墨烯复合材料对其力学/吸波性能的影响机制方面获得原创性的研究成果,在减重和增效基础上实现轻质高性能结构-功能一体化石墨烯复合材料,具有重要的理论意义与工程价值。
石墨烯轻质结构吸波材料的多尺度可控构筑与多功能一体化是军事隐身研究热点。传统制备方法难以实现复杂结构和性能调控,存在微观结构无序、大尺度制备困难等问题,阻碍了其器件化、多功能化应用前景。利用3D打印成形出结构优化、表面质量良好的功能梯度结构模板,以此制备轻质高效的3D石墨烯复合材料,满足良好的力学性能和吸波性能。主要研究成果如下:.(1)合成一种适用于DLP光固化立体成形且力学性能良好的生物基光敏树脂(PLA-PUA/TEGDMA),3D打印试样的拉伸强度为68MPa,弯曲强度和模量分别达到115MPa和5.8GPa。.(2)光固化3D打印实现材料-结构的协同吸波效应,涂覆有Fe3O4/rGO纳米颗粒的复合材料Gyroid结构在2.5mm厚度和有效带宽(9.16–12.4GHz)下显示出-38dB的最小反射损耗,并在X波段覆盖77%,并实现轻量化。.(3)双层蜂窝结构匹配吸波的结构比传统单一层结构的可以达到更大的反射损耗。利用光固化打印,在打印过程中通过更换浆料的方式,顺利实现了匹配层和吸波层的过渡,较之传统压制成型方式而言,光固化打印可以成功打印出蜂窝结构,具有结构吸波特性。当匹配层厚度为0.7mm,吸波层厚度为1.3mm的时候,可以实现最大的反射损耗-47dB。.(4)创新性地设计出一种铰链式柔性吸波结构并实现3D打印铰链式可穿戴吸波结构,可实现多角度变形、力学承载和吸波性能一体化。仿生柔性铰链设计赋予了该结构的机械抗压与自恢复能力,增强了柔性吸波器的多环境应用,同时为智能服装、穿戴防护、飞行器或武器隐身等领域应用提供了新思路。.本项目发表学术论文10篇(8篇英文SCI论文),代表作中1篇发表在Adv. Mater. Technol. (IF: 8.856,google学术他引152次),1篇入选Carbon(IF=11.307)封面文章,2篇发表在Compos. Part A Appl. Sci. Manuf.(IF: 9.463),其中1篇在CNPComp2019会议上荣获Poster二等奖,参与中英国际交流合作项目一项,参与国内外学术会议2次,参编学术专著2部(1部英文专著),授权发明专利2项。入选中国地质大学(武汉)“地大学者青年拔尖人才”1人,新聘教授和博士生导师1人;指导1名硕士获批英国帝国理工博士录取和CSC留学公派资格。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
基于微流控技术的3D打印吸波复合材料研制及吸波性能研究
石墨烯水泥基复合材料吸波性能及机理研究
3D石墨烯基复合吸波材料的构筑、性能调控及机理研究
石墨烯表面共价键合对复合材料吸波性能的作用机制