Navier-Stokes方程Navier边值问题的稳定性与不稳定性

基本信息
批准号:11771155
项目类别:面上项目
资助金额:48.00
负责人:丁时进
学科分类:
依托单位:华南师范大学
批准年份:2017
结题年份:2021
起止时间:2018-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:黄锐,马世香,黄金锐,黎泉荣,林植林,张文杰,刘晓玲,姚焕城,丁沫
关键词:
粘性消失极限不稳定性Navier边界条件稳定性NavierStokes方程
结项摘要

This project is concerned with the stability and instability as well as vanishing viscosity problems for Navier-Stokes equations with Navier boundary conditions. Our concerns include the following problems:(1) stability and instability as well as decay estimates of trivial steady states to Navier-Stokes equations with Navier boundary conditions; (2) stability and instability as well as decay estimates of non-trivial steady states (Couette flows, Poiseuille flows and general shear flows) to Navier-Stokes equations with Navier boundary conditions; (3) vanishing viscosity and boundary layer problems for the incompressible Navier-Stokes equations with Navier boundary conditions. These are the key problems in the studies of Navier-Stokes equations. Especially for the Navier boundary problems, such studies are far from complete but they are very important problems both in theory and in applications. This project is important to the development of the theory of variational method and the theory of spectral method of stability and instability as well as to the vanishing viscosity theory.

本项目以研究Navier边界条件下Navier-Stokes方程的稳定性、不稳定性和粘性消失极限为主线,主要研究下面几个方面的问题:(1)Navier边界条件下Navier-Stokes方程零稳态解的稳定性与不稳定性、衰减估计;(2)Navier边界条件下Navier-Stokes方程非零稳态解(Couette流,Poiseuille流,一般剪切流)的稳定性与不稳定性、衰减估计;(3)Navier边界条件下不可压缩Navier-Stokes方程的粘性消失极限与边界层问题。这些问题都是Navier-Stokes方程领域的核心问题。这些问题的研究对于发展稳定性理论的变分方法、非自共轭方程稳定性的谱方法、粘性消失极限理论具有重要的理论意义与应用价值。本项目紧紧围绕Navier边值问题开展研究,力图为完善Navier边值问题稳定性、粘性消失极限理论做出贡献。

项目摘要

课题组围绕Navier-Stokes方程Navier边值问题以及与Navier-Stokes方程、MHD方程相关的方程的适定性、稳定性、粘性消失极限和边界层展开的收敛性,反应扩散方程的行波解及其稳定性开展了深入细致和有效的研究。取得了一系列具有一定创新性的成果。较好地推动了相关领域的研究向前发展。课题组成员在项目执行期间共发表高水平学术论文28篇。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法

DOI:10.19596/j.cnki.1001-246x.8419
发表时间:2022
2

地震作用下岩羊村滑坡稳定性与失稳机制研究

地震作用下岩羊村滑坡稳定性与失稳机制研究

DOI:10.16285/j.rsm.2019.1374
发表时间:2020
3

采用黏弹性人工边界时显式算法稳定性条件

采用黏弹性人工边界时显式算法稳定性条件

DOI:10.11883/bzycj-2021-0196
发表时间:2022
4

SRHSC 梁主要设计参数损伤敏感度分析

SRHSC 梁主要设计参数损伤敏感度分析

DOI:
发表时间:2014
5

分数阶微分方程奇异系统边值问题正解的存在性

分数阶微分方程奇异系统边值问题正解的存在性

DOI:10.13718/j.cnki.xdzk.2019.04.015
发表时间:2019

丁时进的其他基金

批准号:11371152
批准年份:2013
资助金额:62.00
项目类别:面上项目
批准号:19971030
批准年份:1999
资助金额:10.00
项目类别:面上项目
批准号:10471050
批准年份:2004
资助金额:21.00
项目类别:面上项目
批准号:11071086
批准年份:2010
资助金额:30.00
项目类别:面上项目

相似国自然基金

1

可压Navier-Stokes方程的初边值问题

批准号:11301405
批准年份:2013
负责人:范丽丽
学科分类:A0306
资助金额:22.00
项目类别:青年科学基金项目
2

一类可压Navier-Stokes方程初边值问题的真空问题

批准号:10826050
批准年份:2008
负责人:段然
学科分类:A0306
资助金额:3.00
项目类别:数学天元基金项目
3

广义Navier-Stokes方程的稳定性与准确解

批准号:19571053
批准年份:1995
负责人:施惟慧
学科分类:A0306
资助金额:4.50
项目类别:面上项目
4

各向异性Navier-Stokes和MHD方程边值问题整体正则性

批准号:11526091
批准年份:2015
负责人:于海波
学科分类:A0306
资助金额:2.50
项目类别:数学天元基金项目