This proposal aims at addressing the grand challenges that prevent the precise assembly of one-dimensional inorganic nano-materials into the three-dimensional architectures. Based on the applicant's significant contributions in DNA-directed nano-manufacturing of inorganic nano-materials, this proposal will develop a confined chemical assembly strategy using the multilayer, negatively-charged, dense DNA nano-trenches. By engineering the assembly thermodynamics, kinetics and phase composition, this proposal will demonstrate the high-yield, low-defect, rational integration of the one-dimensional nano-materials within three-dimensional architectures for high-performance semiconductor devices. Using carbon nanotube as a model system, this proposal will first investigate the impact of thermodynamic free energy (including electrostatic repulsion, enthalpy gain through DNA hybridization, and entropy loss) to the assembly yield and positioning variation during the assembly. Second, a multi-step growth-confined assembly protocol will be used to demonstrate the dynamic pathway control of 3D assembly of carbon nanotubes and prevent the formation of kinetic-defects. And finally, through interfacial engineering, the correlation between the interfacial composition and the transport performance will be explored for future 3D carbon nanotube-based memory devices. For the first time, 3D carbon nanotube architectures will be assembled in a fast, automatic, and scalable manner, and the key structural parameters of the assembled 3D architectures will meet the industrial standards of sub-5 nm technology nodes. The main research results of the proposal will be published in 8-10 peer-reviewed high-profile journal papers, alongside with the training of 5 graduate students.
本项目立足于解决制约一维无机纳米材料组装精准度的关键化学问题,基于申请人近年来在核酸引导的无机纳米材料加工方向取得的创新性成果,通过发展核酸纳米结构引导的三维限域组装,有效调控组装过程的热力学、动力学、及界面组成,从而实现一维纳米材料在三维高性能器件架构中的高产率、低缺陷、可控集成。以碳纳米管作为代表性体系,本项目将首先研究静电势垒、核酸杂化焓变、组装熵变热力学关键因素对精准组装过程的影响。进而,利用分步生长与组装,发展动态调控组装途径的策略,避免动力学亚稳态导致的结构缺陷的生成,从而实现快速、自动化、宏量组装高精准度三维碳纳米管阵列,关键结构参数将首次达到5纳米以下节点三维架构的要求。最后,通过界面工程,明确三维碳纳米管阵列中界面结构与电学性能的对应关系,为未来三维器件提供架构设计的关键理论。预期在国外重要期刊上发表高水平学术论文8-10篇,培养博士研究生5名。
碳纳米管具有优异的电学特性,因此被广泛认为是后硅基时代电子器件的重要半导体材料。然而,传统的薄膜组装方法无法有效消除碳基材料组装过程中的结构缺陷,制约了器件综合性能的提升。本项目立足于解决制约一维无机纳米材料精准组装中的关键化学问题。项目探索了空间限域的核酸介导组装方法在小尺寸、高性能碳基器件中的应用潜力及关键方法,发展了核酸介导的大尺度、多维度碳纳米管精准组装方法。结构缺陷率降低了两个数量级,同时组装精准度相对于传统的薄膜组装方法提升两个数量级。通过精确调控每一层碳纳米管的组装途径与结构参数,首次在厘米级基底表面实现了高产率、大范围核酸介导阵列的定制组装,关键结构尺寸优于极紫外光刻的极限,达到亚5纳米节点器件需求。探索了核酸—碳纳米管的界面工程方法,阐明了不同界面组成对碳基计算、存储器件性能的影响,构筑了高性能碳基计算、存储单元,展示了核酸介导组装方法在高性能器件中的的应用潜力。本项目已经在Science, Nature Communications, ACS Applied Bio Materials发表论文3篇,申请国内外发明专利6件,培养博士研究生、博士后共7人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
低轨卫星通信信道分配策略
基于分形维数和支持向量机的串联电弧故障诊断方法
基于无机纳米微粒功能化组装的光电信息材料
三维纳米结构无机/有机杂合体的组装与功能化
超分子自组装有机-无机功能性纳米复合材料
有机组装结晶模板法制备无机纳米/微米材料的基础研究