This project is about classification of C*-algebras (regularity properties) and the research on the interplay between dynamical systems and the corresponding crossed product C*-algebras (applications). Based on classification theory of C*-algebras, we can use relatively simple invariants (Elliott Invariants) to determine/classify a large category of C*-algebras. With this in mind, we will study the interplay between dynamical systems and the corresponding crossed product C*-algebras. For example, we will find the correspondence between such dynamical system properties as “weak conjugacy” and “orbit equivalence” and corresponding C*-algebras...Currently, as for studies on the interplay between dynamical systems and the corresponding crossed product C*-algebras, most of them require that the base space has certain “disconnectedness” and the dynamical system needs to be “minimal”. The main innovation and breakthrough in this project is to weaken the requirements on the “disconnectedness” and “minimality” as above. We will study non-minimal Cantor dynamical systems and dynamical systems on “more general” base spaces. We will find the “appropriate” definitions for “more general” dynamical systems, such that they can connect dynamical system properties and the structures of C*-algebras. We will also study the regularity properties of the general dynamical systems...Our currently finished work includes a 65-page paper of my independent work on “Journal of Functional Analysis”, one submitted paper which is a joint work with Huaxin Lin and three preprints.
本项目是关于C*代数分类理论(正则性)、以及拓扑动力系统和其交叉积C*代数间关系(应用)的研究。 通过分类理论,我们可以用相对简单的不变量来刻画动力系统对应的叉积C*代数。基于此,我们将研究动力系统和该C*代数之间的关系(例如动力系统中的“弱共轭”、“轨道等价”等性质和如何对应于C*代数的性质)。..这方面的研究,目前多需要底空间具有某种不连通性并且动力系统为极小。本项目创新之处在于弱化对于“底空间不连通性”和“动力系统极小性”之要求。我们将研究非极小康托动力系统以及“更一般”底空间上动力系统和C*代数关系。我们将给出基于“更一般”底空间的动力系统上合适的“定义”,用来连接动力系统性质和C*代数结构。我们也将研究动力系统对应的C*代数的正则性。..目前已完成的相关工作为一篇发表于《Journal of Functional Analysis》的65页独立作者论文、一篇在投、还有3篇预印本。
本项目主要研究内容是C*代数正则性问题以及C*动力系统和交叉积C*代数之间的关系。..在 C*代数正则性部分,我们给出了基于目前结果的通过与某类可分类C*代数张量得到的C*代数之正则性来判断原C*代数正则性的相关结果。..在 C*动力系统和交叉积C*代数关系部分,我们处理了非单的C*动力系统,这是一个扩充。同时,对于一般底空间的情形,我们给出了其上两个同胚弱共轭和相应的两个C*代数之间关系的部分信息,这部分也扩展了目前的已知处理方法。..目前的研究中,对于更一般的情形下弱共轭和交叉积C*代数的部分对应关系,仍然没有很令人满意的通用处理方法。项目进行中,我们提出过将动力系统提升到康托动力系统,并通过这个 factor-through map 来进行研究的思路,目前这个思路已经被证明是有用的,但是由于这种提升的不唯一性,影响了最终的结果。关于这个提升的处理,还有值得进一步研究的地方。
{{i.achievement_title}}
数据更新时间:2023-05-31
Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example
One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
多源数据驱动CNN-GRU模型的公交客流量分类预测
Ultrafine Fe/Fe_3C decorated on Fe-N_x-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries
某些C*-代数交叉积的分类问题研究
交叉积C*-代数若干问题的研究
C*-代数上离散群的作用及其交叉积的研究
交叉积代数表示的研究