This project focuses on combustion-source-related indoor air pollution, such as cooking emissions that could cause harmful effect to human health. Scientific evidence is suggesting that PM2.5 can produce ROS directly in air, leading to oxidative damage to the human body. People could be subjected to higher pollutant concentration and longer exposure time indoors than outdoors. This project explores an indoor PM2.5-ROS in-situ real-time monitoring methodology based on the particle-gas-liquid separation technology as well as a fluorescence probe technology, aiming to achieve fast and continuous monitoring of indoor combustion-source-produced PM2.5-ROS, temporally and spatially. Based on the obtained huge amounts of data, this study explores the formation and evolution process of PM2.5-ROS, coupling with the impact of nano effect and environmental factors, on a multi-parameter and quantitative manner. Source spectrum model and fate model of PM2.5-ROS caused by indoor combustion sources will be built. In addition, in vitro experiments will be conducted for PM2.5-ROS toxicity study and proteomics research. The standardized sampling and toxicity evaluation stereotype system will be built up. The achievements of this project is expected a breakthrough in PM2.5-ROS in situ monitoring technology. And core innovation achievements will be realized on the in-depth identification of toxic markers of PM2.5, tracking, cell damage and epigenetic characteristics. The findings of this study will provide theory basis for carrying out the limit and binding of indicators, as well as improving indoor air quality standards.
本项目聚焦烹饪等燃烧源引起的空气污染危害人体健康,基于空气中PM2.5直接产生引起人体氧化损伤的体外ROS这一研究结论,考虑室内污染物浓度高、暴露时间长等特殊问题,探索基于颗粒物气液分离技术和荧光探针技术的室内燃烧源致PM2.5-ROS的实时监测方法,以快速、连续甄别PM2.5-ROS的时空信息;在获得海量数据的基础上,探究纳米效应因素和环境因素对室内燃烧源致PM2.5-ROS形成、演化全过程的定量、多参数耦合的作用机制,以构建室内燃烧源致PM2.5-ROS的源谱和时空归趋模型;进而开展PM2.5-ROS毒性的体外细胞暴露实验和蛋白组学研究,并构建标准化的采样分析和评价体系。预期在PM2.5-ROS原位监测技术上实现突破,在识别PM2.5的毒性标志物、来源追踪、细胞损伤及表观遗传特征等方面取得核心创新成果,为开展空气质量指标限值及指标约束力的研究、完善室内空气质量标准等方面提供理论依据。
PM2.5严重影响室内空气质量,进而危害人体健康,而人体内reactive oxygen species (ROS)的生成与变化规律已被视为健康损伤的标志物, ROS不仅存在于人体内,而且可通过光化学反应、有机物燃烧、及与臭氧的化学反应,在空气中可直接产生附着于PM2.5表面的ROS。室内PM2.5-ROS主要来自各种室内燃烧源,此项目搭建了PM2.5-ROS实时原位监测系统,完善了PM2.5-ROS的监测方法,重点研究了蚊香和烹饪两个燃烧源产生的颗粒态和气态污染物及毒性,结果显示磁盘类型蚊香产生更多颗粒但VOC产生较少。由圆盘和液体类型蚊香产生的颗粒数浓度为分别为130085#/cm3和7963#/cm3。前者尺寸集中在100纳米以下,而后者主要在100和500纳米之间。盘类蚊香产生的颗粒物具有更高的氧化潜力,ROS浓度达0.0430nmol/mg。与盘状蚊香相比,液体蚊香SOA生成潜率更大,达0.015mg /(m·s)3。盘状蚊香和液体蚊香健康风险评估系数分别为6.2×10-5和9.1×10-5,均超过1×10-6的限制。关于使用不同种类的食用油烹饪过程,猪油烹饪产生的ROS量最少。大豆油最高,达8000nmol以上。在细胞实验中,大豆油+大蒜组样品CYP1A1表达最高,花生油+花椒样品IL-8表达最高,且这两组存活率均较低,表明这两组烹饪排放产物对细胞的暴露损伤较为突出。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
论大数据环境对情报学发展的影响
粗颗粒土的静止土压力系数非线性分析与计算方法
硬件木马:关键问题研究进展及新动向
中国参与全球价值链的环境效应分析
室内多源异构时空数据一体化建模与联合查询
室内香烛燃烧产生的多环芳烃的散发特征、分配规律及暴露风险
基于代谢组学研究策略的钼暴露致精子生成障碍的研究
PAEs宫内联合暴露致子代生殖毒性的代谢组学判断