非光滑核的奇异积分及其对微分算子的应用

基本信息
批准号:10371134
项目类别:面上项目
资助金额:16.00
负责人:颜立新
学科分类:
依托单位:中山大学
批准年份:2003
结题年份:2006
起止时间:2004-01-01 - 2006-12-31
项目状态: 已结题
项目参与者:许明,关彦辉,邹进
关键词:
微分算子函数空间T(1)型定理奇异积分热核半群。
结项摘要

对于一类满足Duong-McIntosh 条件非光滑核的奇异积分算子, 我们研究它的有界性包括加权、交换子等理论, 并合理地定义Hardy空间和BMO空间,建立与算子T的L2有界性判别准则即新的T(1)型定理和T(b)型定理。利用微分算子热核半群的性质, 建立非紧黎曼流形上的Laplace-Beltrami算子所对应的齐次的Besov-Triebel-Lizorkin 空间理论。同时,研究自伴算子的Hormander 型谱乘子定理、微分算子的泛函演算以及偏微分方程中的抽象Cauchy 问题极大正则性等问题。这些问题的解决将对调和分析理论和偏微分方程理论作出本质的推进。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

一种基于多层设计空间缩减策略的近似高维优化方法

一种基于多层设计空间缩减策略的近似高维优化方法

DOI:10.1051/jnwpu/20213920292
发表时间:2021
2

基于MCPF算法的列车组合定位应用研究

基于MCPF算法的列车组合定位应用研究

DOI:
发表时间:2016
3

基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例

基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例

DOI:
发表时间:2019
4

TRPV1/SIRT1介导吴茱萸次碱抗Ang Ⅱ诱导的血管平滑肌细胞衰老

TRPV1/SIRT1介导吴茱萸次碱抗Ang Ⅱ诱导的血管平滑肌细胞衰老

DOI:10.3969/j.issn.1001-1978.2022.02.019
发表时间:2022
5

武功山山地草甸主要群落类型高光谱特征

武功山山地草甸主要群落类型高光谱特征

DOI:
发表时间:2016

颜立新的其他基金

相似国自然基金

1

粗糙核的奇异积分算子、函数空间及其应用

批准号:10771221
批准年份:2007
负责人:颜立新
学科分类:A0205
资助金额:20.00
项目类别:面上项目
2

变量核奇异积分算子及其相关问题

批准号:10901017
批准年份:2009
负责人:陈艳萍
学科分类:A0205
资助金额:16.00
项目类别:青年科学基金项目
3

与微分算子相联系的奇异积分算子的最佳加权模估计及其应用

批准号:11226100
批准年份:2012
负责人:龚汝明
学科分类:A0205
资助金额:3.00
项目类别:数学天元基金项目
4

振荡奇异积分算子及变量核超奇异积分交换子

批准号:10826046
批准年份:2008
负责人:陈艳萍
学科分类:A0205
资助金额:3.00
项目类别:数学天元基金项目