探地雷达正演模拟的高效无网格数值计算方法研究

基本信息
批准号:61761017
项目类别:地区科学基金项目
资助金额:37.00
负责人:张晓燕
学科分类:
依托单位:华东交通大学
批准年份:2017
结题年份:2021
起止时间:2018-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:杨顺川,谢衍,任宝平,田苗,马海涛,陈雨庭
关键词:
无条件稳定无网格算法径向基点插值法地下目标多尺度
结项摘要

A high efficient field simulation algorithm determines the adaptability and stability of an inversion algorithm. It is very difficult to discretize a GPR model into meshes/grids since it has a multiscale structure and it is composed by a lot of complex materials. In contrast, meshless numerical method only bases on a set of scattering nodes which does not need to form a mesh and can be located arbitrarily to describe the geometries of interest. Therefore, meshless method has a strong competitive advantage in dealing with the multiscale problems. However, the formulas created by pure meshless approaches are generally identified as ill-posed and the solutions are prone to be unstable. To overcome the above problems, an unconditional stable radial point interpolation method (RPIM) is proposed. In this project, firstly, all of the nodes are arranged reasonable to avoid the interpolation matrix to become singular. Then, the eigenmodes of the matrix are analyzed to remove the unstable modes, which can fundamentally eliminate the solution instabilities and accelerate the meshless programs. Furthermore, the proposed schemes such as the nodes’ distribution, non-uniform support domain, and the hybrid basic functions are very easier to achieve since they are just dependent on the density of the nodes. It is unnecessary to introduce extra equations. The size of the support domain and the forms of the basic functions can be automatically changed. Therefore, the proposed method is simple and can be used in other computations. Based on the numerical model, the electromagnetic backscattering characteristics of the objects under complex soil intend to be researched, to provide the data and the theoretical basis for the GPR’s quantitative and automatic interpretation analysis.

正演模型的计算速度与精度决定了反演算法的适应性与稳定性。复杂探地雷达正演模型的多尺度结构为传统基于网格的数值方法的单元剖分造成困难,无网格数值方法仅基于节点运算,无需单元剖分,节点需求量少且分布灵活,在处理多尺度结构问题方面极具优势。然而,纯无网格法得到的方程组一般是病态的,其解是不稳定的。本申请项目以径向基点插值法(RPIM)为核心,提出一种无条件稳定的纯无网格数值算法。该方法首先合理安排节点,避免插值矩阵奇异,然后基于矩阵特征模分析,滤除导致算法不稳定的因素,从根本上实现算法的稳定与加速。项目中提出的节点多尺度分布方案、非均匀支撑域与多种基函数混合方案,只根据节点密度自动改变支撑域大小或基函数形式,无需引入额外的求解方程,方法简单且具普适性。基于数值模型,本项目拟对复杂土壤背景下的地下目标的回波响应特征展开研究,为实现探地雷达数据的定量解译与自动判读提供理论分析的方法和依据。

项目摘要

复杂探地雷达正演模型的多尺度结构为传统基于网格的数值方法的单元剖分造成困难,无网格数值方法仅基于节点运算,无需单元剖分,节点需求量少且分布灵活,在处理多尺度结构问题方面极具优势。然而,纯无网格法得到的方程组一般是病态的,其解是不稳定的。本项目以径向基点插值法(RPIM)为核心,主要对以下内容进行了研究:. 1)设计了三款能应用于UWB-GPR的平面印刷天线,为今后开展GPR系统的真实天线模拟提供技术支持;. 2)基于RPIM的有限节点环境对RPIM的数值色散情况进行分析,得到有耗空间的普适性结论;. 3)对基于矢量波动方程的RPIM算法进行研究,新算法在减少未知数的同时还能抑制非物理电荷的积累;. 4)对RPIM的稳定性问题进行分析、处理。首先从建立多尺度节点分布模型的角度出发提高算法的稳定度;然后通过分析RPIM的系数矩阵特征,引入截断奇异值分解(TSVD)法,采用系数矩阵的伪逆代替原始矩阵的逆运算,从而避免因矩阵无法求逆而导致的算法无法进一步运行的问题;接着,将Gaussian基函数使用Mercer原理展开为Gaussian核,寻找一个能够消除算法对形参依赖的新的基函数,并采用求解伪逆的方式代替矩阵求逆。现有的数值实验证明:以上处理方式能综合解决算法的精度与稳定性的问题。. 5)对基于差分法的子网格数值计算方法、无条件稳定显式迭代算法进行研究,并基于传统FDTD法、子网格FDTD法、无条件稳定的显式方法、RPIM法建立GPR数值计算模型。为今后开展无网格法与网格法间的混合建模提供必要的技术支持;. 6)以上算法被应用于天线测试、多物理场仿真、电磁波传播、腔体谐振、探地雷达回波信号模拟等电磁问题中,计算性能得到了有效证明。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

DOI:10.16606/j.cnki.issn0253-4320.2022.10.026
发表时间:2022
3

基于多模态信息特征融合的犯罪预测算法研究

基于多模态信息特征融合的犯罪预测算法研究

DOI:
发表时间:2018
4

居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例

居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例

DOI:10.11821/dlyj201810008
发表时间:2018
5

城市轨道交通车站火灾情况下客流疏散能力评价

城市轨道交通车站火灾情况下客流疏散能力评价

DOI:
发表时间:2015

张晓燕的其他基金

批准号:71501124
批准年份:2015
资助金额:17.40
项目类别:青年科学基金项目
批准号:51705332
批准年份:2017
资助金额:24.00
项目类别:青年科学基金项目
批准号:30901588
批准年份:2009
资助金额:20.00
项目类别:青年科学基金项目
批准号:81400397
批准年份:2014
资助金额:23.00
项目类别:青年科学基金项目
批准号:61061002
批准年份:2010
资助金额:24.00
项目类别:地区科学基金项目
批准号:81470094
批准年份:2014
资助金额:30.00
项目类别:面上项目
批准号:11571200
批准年份:2015
资助金额:50.00
项目类别:面上项目
批准号:61772002
批准年份:2017
资助金额:50.00
项目类别:面上项目
批准号:61402064
批准年份:2014
资助金额:25.00
项目类别:青年科学基金项目
批准号:81200511
批准年份:2012
资助金额:25.00
项目类别:青年科学基金项目
批准号:81501621
批准年份:2015
资助金额:18.00
项目类别:青年科学基金项目
批准号:31902001
批准年份:2019
资助金额:25.00
项目类别:青年科学基金项目
批准号:81771704
批准年份:2017
资助金额:60.00
项目类别:面上项目
批准号:30700546
批准年份:2007
资助金额:19.00
项目类别:青年科学基金项目
批准号:10701049
批准年份:2007
资助金额:16.00
项目类别:青年科学基金项目
批准号:81570636
批准年份:2015
资助金额:51.00
项目类别:面上项目
批准号:81472424
批准年份:2014
资助金额:60.00
项目类别:面上项目
批准号:30371319
批准年份:2003
资助金额:24.00
项目类别:面上项目
批准号:10526029
批准年份:2005
资助金额:3.00
项目类别:数学天元基金项目
批准号:30671941
批准年份:2006
资助金额:35.00
项目类别:面上项目
批准号:30872354
批准年份:2008
资助金额:8.00
项目类别:面上项目
批准号:81171553
批准年份:2011
资助金额:58.00
项目类别:面上项目

相似国自然基金

1

基于小波有限元的探地雷达正演模拟及偏移处理

批准号:40804027
批准年份:2008
负责人:冯德山
学科分类:D0408
资助金额:20.00
项目类别:青年科学基金项目
2

基于自适应有限元法的探地雷达正演及逆时偏移成像

批准号:41604102
批准年份:2016
负责人:王洪华
学科分类:D0408
资助金额:20.00
项目类别:青年科学基金项目
3

复杂GPR模型无网格法正演及多参数混合智能优化反演

批准号:41074085
批准年份:2010
负责人:冯德山
学科分类:D0408
资助金额:50.00
项目类别:面上项目
4

可控源时间域电磁响应三维正演数值模拟研究

批准号:41504096
批准年份:2015
负责人:毛玉蓉
学科分类:D0408
资助金额:23.00
项目类别:青年科学基金项目