逼近论的研究已有悠久的历史,特别在实函数及单复变函数已形成较为丰富的理论,但对于多复变全纯函数空间的逼近结果较少。本项目就是以此为切入点,将成熟逼近理论和多复变函数论相结合,进行多复变全纯函数空间中心逼近定理等核心问题的研究。. 本项目主要是在多复变的各个全纯函数空间如Qp、Hardy、Bergman等空间中用最简单的函数(如代数多项式、三角多项式等)来逼近空间函数,重点是研究函数空间的中心逼近定理(即函数性质与多项式逼近程度的相互关系):Jackson定理和Bernstein定理,并进一步研究相关的逼近问题如空间中函数类的逼近等价刻画、高阶逼近、K-泛函理论等。.本项目的研究富有开创性,有助于促进和丰富函数论尤其是多复变全纯函数空间理论研究。同时在信号处理、计算数学、工程数学等方面也有广泛的应用前景。
本项目是将成熟的逼近论和多复变函数论相结合,围绕多复变全纯函数空间中心逼近定理等核心的逼近理论展开研究。. 本项目取得了许多创新性成果:第一,在多复变的多个全纯函数空间如Qp、新引入的Qμ和Aμ空间中的多项式函数逼近的中心逼近定理(Jackson定理和Bernstein定理),并进一步得到了空间中Lipschitz和Zygmund函数类的逼近等价刻画,特别是在Bernstein定理研究中取得了突破性的进展;第二,Bergman空间中的Hardy-Littlewood 定理;第三, C^n中Dirichlet函数类的Fej\'{e}r算子的逼近;第四,Qp空间中利用K-泛函的强逆不等式等逼近理论。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例
2009 -2017年太湖湖泛发生特征及其影响因素
贵州织金洞洞穴CO2的来源及其空间分布特征
传统聚落中民间信仰建筑的流布、组织及仪式空间——以闽南慈济宫为例
多复变函数空间与算子理论
多复变函数空间上的算子理论
多复变函数空间上几个问题研究
多复变函数空间上的算子及应用