本项目研究数域上半单代数的高阶K-群的结构与性质。主要内容分为两个课题。第一个是数域上半单代数的order的高阶类群的结构。order的n阶类群定义为其SKn群之整体与局部的差异。本课题将主要研究其比较困难的偶数阶的情况。第二个是数域上半单代数的高阶K-群与其zeta函数的关系。本课题将主要研究Lichtenbaum猜想在非交换情形的类比。. 这个项目的研究对我们了解数域上的半单代数的结构会有很大的帮助。在非交换几何中亦有应用。对代数K-理论,代数数论都很有意义.
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
拥堵路网交通流均衡分配模型
五轴联动机床几何误差一次装卡测量方法
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
算术域的代数K-理论
数域上代数簇的周群,K-群及其不变量研究
域的K-群的挠与算术代数几何
群环的代数K-理论