It is a challenge in studying the stability and Hopf-bifurcation theories for partial differential equations and neutral differential equations with state-dependent delays, and applications in stage structured population models. Firstly, the stability and Hopf-bifurcation theories for partial differential equations with state-dependent delays are established by considering the differentiability and compactness of semiflow, linearization at equilibria and local invariantmanifolds at stationary points. It is helpful to study the existence and stability of traveling waves for reaction diffusive equations with state-dependent delays, which can be transformed into the homoclinic solutions of ordinary differential equations with state-dependent delays by constructing a pair of upper-lower solutions and Schauder's fixed point theorem. Furthermore, we develop the local and global Hopf-bifurcation theory for neutral differential equations with state-dependent delays using the equivariant degree theory. According to the theories obtained, we finally analyze some stage structured population models, such as the boundedness of solutions, positivity, stability and bifurcations,reveale the effect of state-dependent delays on the population model.
研究状态依赖时滞偏微分方程和中立型状态依赖时滞微分方程的定性理论及其在年龄结构种群模型中的应用是一项挑战性的工作。本项目将通过对半流的可微性和紧性、稳态处的线性化和稳态处的局部不变流形的研究建立状态依赖时滞偏微分方程的稳定性和 Hopf 分支理论。进而考虑状态依赖时滞反应扩散方程行波解的存在性和稳定性这一问题,并将该问题转化为求一个状态依赖时滞常微分方程的异宿轨,然后借助构造适定的上下解和 Schauder不动点定理来解决。本课题还将借助等变度理论建立一类中立型状态依赖时滞微分方程的局部和全局 Hopf 分支。最后,基于所建立的理论分析一类年龄结构种群模型解的有界性、正性,稳态的稳定性和分支行为等,揭示状态依赖时滞对种群模型的影响。
该项目研究了状态依赖时滞抛物型微分方程解半流的光滑性;中立型状态依赖时滞微分方程的全局Hopf分支;状态依赖时滞阶段结构种群模型的波前解;状态依赖时滞竞争模型和捕食模型的全局稳定性;Gause型、年龄结构型和食饵释放毒素型捕食扩散模型的全局稳定性和Hopf分支;具有防御行为的时滞捕食模型的群聚效应;食草动物--浮游植物模型中反馈控制诱发的周期性;一个尺度结构种群模型的优化收获问题;时滞杂交系统的优化问题及其在农业生态系统中的应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
二维FM系统的同时故障检测与控制
具有随机多跳时变时延的多航天器协同编队姿态一致性
扶贫资源输入对贫困地区分配公平的影响
汽车侧倾运动安全主动悬架LQG控制器设计方法
状态依赖时滞微分方程动力学研究
状态依赖时滞微分方程的长时间动力学研究
时滞微分方程的定性分析
几类时滞随机微分方程数值算法的研究