复流形上的分析与几何

基本信息
批准号:11571288
项目类别:面上项目
资助金额:50.00
负责人:邱春晖
学科分类:
依托单位:厦门大学
批准年份:2015
结题年份:2019
起止时间:2016-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:钟同德,黄宏伟,蔡国财,袁日荣,夏红川,魏超,李鸿军,徐那,祝伟霞
关键词:
Finsler流形Hermitian流形奇异积分Hodge理论积分表示
结项摘要

Function theory of several complex variables is one of the most active subject in modern mathematics. This project researches Finsler geometry, integral representations, uniform estimates for the dbar-operator and singular integral in several complex variables. There are the following three parts in this project..(1)Harmonic integral theory and Bochner technique on Finsler manifolds. The de Rham Hodge theory on Riemann manifolds will be extended to real Finsler manifolds. We will continue to study the Bochner technique and Bochner-Kodaira technique on complex Finsler manifolds and apply them to study the harmonic integral theory on compact complex Finsler manifolds..(2)Integral representations and uniform estimates for the dbar-operator. We will continue to study the theory of integral representation and uniform estimates of solutions for dbar-equation on C^n, Stein manifolds and Hermitian manifolds. We will further study the theory of integral representation for (p,q) differential forms on complex Finsler manifolds..(3)Singular integral of several complex variables. We will study the singular integral of higher order on C^n and Stein manifolds.

多复变函数论是现代数学中最为活跃的学科之一,本项目研究Finsler几何、多复变函数论中的积分表示及dbar-算子的一致估计和奇异积分,主要有如下三方面的内容:.(1)Finsler流形上的调和积分理论及Bochner技巧。把Riemann流形上de Rham Hodge理论拓广到实Finsler流形上。继续研究复Finsler流形上的Bochner技巧和Bochner-Kodaira技巧,并应用它们来研究紧致复Finsler流形上的调和积分理论。.(2)多复变数的积分表示和 dbar-算子的一致估计。继续研究C^n中、Stein流形、Hermite流形积分表示理论和dbar-方程解的一致估计。进一步研究复Finsler流形上(p,q)型微分形式的积分表示理论。.(3)多复变数的奇异积分。研究C^n和Stein流形上的高阶奇异积分。

项目摘要

本项目研究Finsler几何、多复变函数论中的积分表示及dbar-算子解的一致估计和奇异积分,共完成论文25篇,培养了4名博士生,1名硕士生。主要有如下三方面的内容:.(1) Finsler流形上的调和积分理论及Bochner技巧。研究复Finsler流形上的Laplace算子,Bochner技巧,Bochner-Kodaira技巧及调和积分理论,得到了Hodge定理和消灭定理,比较定理和Wu定理。并研究特殊的复Finsler度量。.(2) 多复变数的积分表示和dbar-算子的一致估计。研究复Finsler流形、Hermite流形积分表示理论和dbar-方程解的一致估计。并研究dbar-Neumann拉普拉斯算子。.(3) 多复变数的奇异积分。研究多复变数的高阶奇异积分和全纯自同构群。并研究亚纯函数的值分布理论。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于细粒度词表示的命名实体识别研究

基于细粒度词表示的命名实体识别研究

DOI:10.3969/j.issn.1003-0077.2018.11.009
发表时间:2018
2

基于协同表示的图嵌入鉴别分析在人脸识别中的应用

基于协同表示的图嵌入鉴别分析在人脸识别中的应用

DOI:10.3724/sp.j.1089.2022.19009
发表时间:2022
3

地震作用下岩羊村滑坡稳定性与失稳机制研究

地震作用下岩羊村滑坡稳定性与失稳机制研究

DOI:10.16285/j.rsm.2019.1374
发表时间:2020
4

卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比

卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比

DOI:10.13249/j.cnki.sgs.2020.08.003
发表时间:2020
5

不确定失效阈值影响下考虑设备剩余寿命预测信息的最优替换策略

不确定失效阈值影响下考虑设备剩余寿命预测信息的最优替换策略

DOI:10.11887/j.cn.202101019
发表时间:2021

邱春晖的其他基金

批准号:11171277
批准年份:2011
资助金额:52.00
项目类别:面上项目
批准号:10271097
批准年份:2002
资助金额:18.00
项目类别:面上项目
批准号:10771174
批准年份:2007
资助金额:28.00
项目类别:面上项目
批准号:10826006
批准年份:2008
资助金额:3.00
项目类别:数学天元基金项目
批准号:11726022
批准年份:2017
资助金额:18.00
项目类别:数学天元基金项目
批准号:11126005
批准年份:2011
资助金额:5.00
项目类别:数学天元基金项目
批准号:11826024
批准年份:2018
资助金额:20.00
项目类别:数学天元基金项目
批准号:10571144
批准年份:2005
资助金额:15.00
项目类别:面上项目

相似国自然基金

1

复流形上的几何与分析

批准号:19771039
批准年份:1997
负责人:洪毅
学科分类:A0202
资助金额:7.50
项目类别:面上项目
2

复流形上的几何与函数论

批准号:11171277
批准年份:2011
负责人:邱春晖
学科分类:A0202
资助金额:52.00
项目类别:面上项目
3

复流形上的分析及其应用

批准号:10771174
批准年份:2007
负责人:邱春晖
学科分类:A0202
资助金额:28.00
项目类别:面上项目
4

复流形上的分析及其应用

批准号:10126011
批准年份:2001
负责人:严荣沐
学科分类:A0202
资助金额:2.00
项目类别:数学天元基金项目