The project focuses on the studies of related problems among Painleve equations, orthogonal polynomials, random matrix theory and Heun equations. The main contents include the following aspects. We will give the Hankel determinant representation of rational solutions to Painleve III and corresponding generating functions,orthogonal polynomials, asymptotical behavior and isomonodromy problem. We will present series solutions of biconfluent Heun equation with special functions as expansion basis and explain the relation between Heun and Painleve equations from the point of view of solutions. We will investigate links of orthogonal polynomials, random matrix ensembles and Painleve equations.. Finally, we will consider (semi)finite-gap problems of Heun equations.
本项目主要研究Painleve方程与正交多项式、随机矩阵以及Heun方程的相关问题,主要研究内容包括:Painleve方程有理解的Hankel行列式表示和相关生成函数、正交多项式、渐近分析及isomonodromy问题;双合流Heun方程的特殊函数展开解以及与Painleve IV方程的联系;正交多项式、随机矩阵系综与Painleve方程之间的联系;Heun方程的(semi)finite-gap问题。
本项目主要研究了Painleve方程与正交多项式、随机矩阵以及Heun方程的相关问题,主要研究内容包括:Painleve方程有理解的Hankel行列式表示和相关生成函数、正交多项式、渐近分析;双合流Heun方程的特殊函数展开解以及与Painleve IV方程的联系;柯西双正交多项式及其一般情形、柯西2-矩阵模型、Bures系综以及可积格方程(族)之间的联系。在数值算法,孤子方程的可积离散化、多周期波的数值计算、正交多项式与可积格方程(族)理论、随机矩阵模型的研究方面取得了新进展。具体包括:基于Wynn的epsilon和rho算法,构造了新的序列加速收敛算法,推广了epsilon算法和rho算法以及Osada提出的一般化rho算法。构造了修正Camassa-Holm方程的可积半离散型。研究了有限域上推广的Lotka-Volterra格的矩问题,以此构造了多BCH-Goppa码的解码算法。构造了mKdVsine-Gordon方程、2维BKP方程等可积方程的数值3周期波解。研究了2参数的一般化柯西双正交多项式及其相关的可积格方程。相关结果发表在CMP, Nonlinearity, JNS, SAPM, Phys D. Ramanujan J.等本领域重要期刊。
{{i.achievement_title}}
数据更新时间:2023-05-31
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
基于MCPF算法的列车组合定位应用研究
具有随机多跳时变时延的多航天器协同编队姿态一致性
汽车侧倾运动安全主动悬架LQG控制器设计方法
黏弹性正交各向异性空心圆柱中纵向导波的传播
复域中微分方程-Painleve方程解的性质及其应用的研究
复域上的差分Painleve方程
Hessian型方程及其相关问题
Landau-Lifshitz方程及其相关方程消失极限问题