Selectively inducing alternative (M2) polarization of microglia/macrophages is a new therapeutic strategy to promote brain repair and functional recovery following ischemic stroke. Our previous study showed that the slow-releasing hydrogen sulfide (H2S) donor ADT-OH promoted M2 polarization of microglia/macrophages and brain repair by activating AMPK following cerebral ischemia. However, the molecular mechanism by which ADT-OH activates AMPK remains unclear so far. By acting as the enzyme that initiates sulfide oxidation, sulfide : quinone oxidoreductase (SQR) plays an essential role in the metabolism of the gaseous signaling molecular H2S. We propose in the project that SQR-mediated sulfide oxidation leads to mitochondrial uncoupling, which is the mechanism underlying AMPK activation by ADT-OH. To further investigate whether SQR is a novel therapeutic target for ischemic stroke and how SQR promotes brain repair and functional recovery following cerebral ischemia, we propose to use the cellular oxygen glucose-deprivation model as well as the gene engineered mice with specific deletion of SQR in microglia and macrophages. By using these approaches, we will investigate: 1) whether the promoting effects of ADT-OH on post-ischemic AMPK activation and M2 polarization of microglia/macrophages are dependent on SQR; 2) whether SQR acts through M2 polarization of microglia/macrophage to mediate the promoting effects of ADT-OH on brain repair and functional recovery following stroke. For the first time, the proposed project will show that SQR-mediated sulfide oxidation is novel mechanism to promote brain repair by inducing M2 polarization of microglia/macrophages following cerebral ischemia.
脑缺血后诱导小胶质/巨噬细胞M2极化是促进缺血性脑损伤修复的新策略。我们发现:缓释H2S供体ADT-OH通过激活AMPK促进脑缺血后小胶质/巨噬细胞M2极化及损伤修复。但ADT-OH激活AMPK的机制不明。硫化物-醌氧化还原酶(SQR)是气体信号分子H2S氧化代谢的关键酶。本课题提出并将在细胞模型证实:SQR对H2S氧化代谢导致线粒体解偶联是ADT-OH激活AMPK的关键分子机制。为了进一步表明SQR是促进缺血性脑损伤修复的新靶点并探讨作用机制,我们将利用细胞缺氧缺糖模型及小胶质/巨噬细胞特异性敲除SQR的基因工程鼠探讨:1)SQR介导ADT-OH脑缺血后促进小胶质/巨噬细胞AMPK活化及M2极化的作用;2)SQR介导ADT-OH通过M2极化机制促进脑缺血后血管新生及白质修复的作用。本课题首次提出:SQR介导的H2S氧化代谢是通过调控小胶质/巨噬细胞极化促进缺血性脑损伤修复的新机制。
前期研究发现:缓释H2S供体ADT-OH通过激活AMP激活的蛋白激酶(AMPK)促进脑缺血后小胶质/巨噬细胞M2极化及损伤修复。但ADT-OH激活AMPK的机制不明。硫化物-醌氧化还原酶(SQR)是气体信号分子H2S氧化代谢的关键酶。本课题的结果表明:SQR对H2S氧化代谢导致线粒体解偶联是ADT-OH激活AMPK的关键分子机制。我们发现:缓释供体ADT-OH释放的H2S被SQR氧化后驱动电子在线粒体复合物I的反向传递,从而产生线粒体氧自由基。线粒体氧自由基进而通过激活解偶联蛋白2导致H2S的胞内信号传导,如下游AMPK的激活。利用细胞缺血模型,我们进一步发现H2S供体ADT-OH通过SQR促进小胶质细胞AMPK活化及M2极化。本课题还首次制备了SQR条件性敲除鼠(Sqrfl/fl),并利用从Jackson Lab引进的Cx3cr1-cre小鼠,制备获得了小胶质/巨噬细胞特异性敲除SQR的基因工程鼠(Cx3cr1-cre:Sqrfl/fl)。利用Cx3cr1-cre:Sqrfl/fl小鼠,我们初步发现SQR介导H2S供体ADT-OH在脑缺血后促进血管新生及功能康复的作用。我们还初步发现H2S供体在脑缺血后促进白质损伤修复。综上,本课题的结果提示SQR介导的H2S氧化代谢是缺血性脑损伤修复的新机制。课题有望为脑卒中的治疗开拓新方向。
{{i.achievement_title}}
数据更新时间:2023-05-31
肥胖型少弱精子症的发病机制及中医调体防治
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
奥希替尼治疗非小细胞肺癌患者的耐药机制研究进展
神经退行性疾病发病机制的研究进展
基于综合治理和水文模型的广西县域石漠化小流域区划研究
单环刺螠硫化物氧化代谢的分子特征及硫醌氧化还原酶基因的转录调控
线粒体呼吸链氧化还原酶之间界面醌反应机制研究
黄嘌呤氧化还原酶在人类氧化性脑损伤中的作用和机制
基于硫醌氧化还原酶表达的微生物传感器构建及其对环境污染物硫化物检测研究