A novel hydro-mechanical power split mechanism which can split engine power into mechanical and hydraulic power simultaneously in single unit has been proposed for series-parallel hydraulic hybrid system in this study. The series-parallel hydraulic hybrid system combines the advantages of both parallel and series hydraulic hybrid systems and has great potential in construction machinery since it can optimize engine operations by decoupling engine speed from vehicle speed while still has relatively high transmission efficiency. The power split device is the key component to split power in the series-parallel hydraulic hybrid system. The typically used power split device is the planetary gear set. It only splits the engine power into two mechanical power branches and the conversion from mechanical power to hydraulic power is still to be achieved by a hydraulic pump. To split the engine power into mechanical and hydraulic power simultaneously in single unit, a novel hydro-mechanical power split mechanism is developed. It originates from a double-acting balanced vane pump but with an additional output shaft and a floating ring. By coupling the floating ring to the output shaft, it essentially becomes a hydraulic transmission with a pressure control port. It splits the mechanical power on the input shaft into the mechanical power on the output shaft and the hydraulic power at the pressure control port simultaneously. The power split ratio can be adjusted by controlling the pressure at the pressure control port. The proposed hydro-mechanical power split mechanism provides a new approach to splitting power in series-parallel hydraulic hybrid systems.
针对混联式液压混合动力系统中机械和液压功率无法实现同步分流,提出了一种新的功率分流机理,在单个元件上实现机械和液压功率的同步分流。混联式液压混合动力集并联式和串联式混合动力的优势于一体,既能优化发动机工作点,又有较高传动效率,应用前景广泛。功率分流元件是混联式系统实现机械液压复合传动的重要元件,现有系统通常采用行星齿轮组进行功率分流,行星齿轮组只实现机械功率分流,机械功率转化成液压功率仍需液压泵来实现,无法实现机械和液压功率的同步分流。该研究提出的功率分流元件基于双作用式叶片泵,但区别是多一个输出轴并与浮动定子连接,本质上是一个带液压控制端的液压变速器,将输入轴机械功率转化成输出轴机械功率和液压控制端液压功率,在单个元件上实现机械和液压功率的同步分流,通过控制液压控制端压力实现功率分流比的调节。通过对液压变速器功率分流机理的研究,为混联式液压混合动力系统提供了一种新的功率分流方法。
针对混联式液压混合动力系统中机械和液压功率无法实现同步分流,提出了一种新的功率分流机理,在单个元件上实现机械和液压功率的同步分流。混联式液压混合动力集并联式和串联式混合动力的优势于一体,既能优化发动机工作点,又有较高传动效率,应用前景广泛。功率分流元件是混联式系统实现机械液压复合传动的重要元件,现有系统通常采用行星齿轮组进行功率分流,行星齿轮组只实现机械功率分流,机械功率转化成液压功率仍需液压泵来实现,无法实现机械和液压功率的同步分流。该研究提出的功率分流元件基于双作用式叶片泵,但区别是多一个输出轴并与浮动定子连接,本质上是一个带液压控制端的液压变速器,将输入轴机械功率转化成输出轴机械功率和液压控制端液压功率,在单个元件上实现机械和液压功率的同步分流,通过控制液压控制端压力实现功率分流比的调节。通过对液压变速器功率分流机理的研究,为混联式液压混合动力系统提供了一种新的功率分流方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
滚动直线导轨副静刚度试验装置设计
双吸离心泵压力脉动特性数值模拟及试验研究
miR-155、miR-192调控Rho A/Rho GTPase信号通路对原发性开角型青光眼的干预
混合式液压-机械无极变速分流理论与基本特性研究
特性参数连续可变液压机械复合传动的分流机理及控制方法
液压机械无级传动全功率动力换段机理及控制研究
高频机械-液压复合传动中的液压压力波动与液压迟滞现象