In order to improve enzyme catalysis efficiency, stability and the amount of enzyme immobilized on the support, halloysite nanotubes (HNTs) herein will be utilized as inorganic components to construct nanotube-built hierarchical nest-like morpholopy with porous structure. To change the outer surface charge, chitosan (CTS) will be initially introduced to modify HNTs, therefore reversing the electrochemical properties of HNTs. Then the proper emulsifier is added to form water/oil micro-emulsion which facilitates the adsorption of positive charged CTS-HNTs on the negative charged surface of oil core, thus resulting in a core-shell structure. Finally the integrated spherical hybrid-microgel network will be constructed by cross-linking gel formation. Some effects on self assembly of microsphere will be investigayed to built a method of modifing-charging-assembling which can also be used to construct other porous materials. To promote the application of the hybrid-microsphere network in enzyme immobilization field, we will study systematically on the impacts of the hierarchical structure of network on enzyme activity which holds an important role in improving the thermal stability, pH stability, storage stability of the biocatalyst. To understand the immobilization mechanism, the thermodynamics and dynamical equations of the enzyme adsorption process will be investigated to provide a theoretical framework for the application of the biomaterials as supports for enzyme immobilization.. As a kind of new nanostructure with specific morphologies, the hierarchical nest-like porous microsphere will be built with hybrid CTS-HNTs which holds the advantages of both inorganic and organic materials. Thanks to their biocompatible and non-toxic property, the hybrid-materials offer thus a new family for enzyme support, biocompatible delivery system, porous bio-support material, catalyst support, etc.
基于提高固定酶的催化效率、稳定性及固定量,本课题以埃洛石纳米管为结构单元,构筑由纳米管搭接而成的鸟巢状多孔微球作为新型酶载体材料。首先用壳聚糖对埃洛石纳米管进行表面修饰,调整纳米管表面荷电性质;然后采用适当的乳化剂,形成水包油的微乳液体系,使改性的埃洛石纳米管通过静电作用吸附到微乳液表面,在其界面实现自组装,再通过交联反应合成复合多孔微球。研究微球的自组装规律,探索一维材料通过"表面改性-赋予电荷-组装"构筑多孔材料的方法。进一步研究复合多孔微球结构对固定酶的性能影响,提高酶的耐热性、耐酸碱性及储藏稳定性等性能,建立载体对酶的吸附热力学及动力学方程,实现固定酶的高效、循环利用。.多孔微球集成了无机-有机复合材料的优点,形成了由纳米管的空腔和其搭接空隙组成的特殊多孔结构,预期具有良好的生物相容性,可作为高效的生物酶固定载体,也作为药物缓释材料、多孔生物支架材料和催化剂载体等。
为了提高固定酶的催化效率、稳定性及固定量,本课题以埃洛石纳米管为结构单元,构筑由纳米管搭接而成的鸟巢状多孔微球作为新型酶载体材料。首先用壳聚糖对埃洛石纳米管进行表面修饰,调整纳米管表面荷电性质;然后采用适当的乳化剂,形成水包油的微乳液体系,使改性的埃洛石纳米管通过静电作用吸附到微乳液表面,在其界面实现自组装,再通过交联反应合成复合多孔微球。研究微球的自组装规律,探索一维材料通过“表面改性-赋予电荷-组装”构筑多孔材料的方法。进一步研究复合多孔微球结构对固定酶的性能影响,提高酶的耐热性、耐酸碱性及储藏稳定性等性能,建立载体对酶的吸附热力学及动力学方程,实现固定酶的高效、循环利用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
格雷类药物治疗冠心病疗效的网状Meta分析
高压工况对天然气滤芯性能影响的实验研究
不同改良措施对第四纪红壤酶活性的影响
苯并噁嗪对埃洛石纳米管的表面修饰及杂化材料构筑研究
埃洛石纳米管表面微孔结构的构筑及其复合储热相变材料的制备
磁性埃洛石纳米管聚合体系的组装及对外循环肿瘤细胞的吸附与分离研究
聚合物-埃洛石纳米管杂化材料的研究