Our research results are made of two parts. The first part is the research on bifurcation of polynomial systems. The second part is the research on traveling wave solutions of partial differential equations. In the frest part, we find that five perturbed systems have the same distribution of limit cycles. We show that there are 13 limit cycles for cubic systems with 7 degrees perturbations, 14 limit cycles for cubic systems with 9 degrees perturbations. We also give qualitative analysis method and numerical.exploration to the study of limit cycles for quitic systems. In the second.part, by using bifurcation methods of dynamical systems, we investigate.traveling wave solutions of several famous partial differential equations.The explicit expressions of soliton solutions and kink solutions are given. Our works extend some results in literary. Specially, we obtain some new soliton solutions of KdV equation and Camassa-Holm equation.
本项目拟研究三次以上对称多项式系统的全局与局部分支。着重研究在对称群作用下不变的哈密顿向量场及其扰动系统的小振幅周期解、同宿环、异宿环的存在性,极限环的分布与个数。寻找适合于高次多项式系统的研究方法,编制或改进计算软件包,确定计算机模拟的方法,深入探讨与弱化的希尔伯特第16问题有关的平面多项式系统的动力学性质。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
基于旋量理论的数控机床几何误差分离与补偿方法研究
长链基因间非编码RNA 00681竞争性结合miR-16促进黑素瘤细胞侵袭和迁移
现代优化理论与应用
多元化企业IT协同的维度及测量
平面向量场的多重极限环分支与等变系统的全局分支
非线性波研究的动力系统方法和等变全局分支
平面多项式微分自治系统的等时性与极限环分支
等变向量场的全局分支