Using direct-driven generation network to implement regional wave energy extraction is a novel idea aiming at solving the disadvantages inherent from a wave energy conversion unit such as low efficiency, poor power quality, etc. However, due to the high price of the infrastructure construction and the constraint property of the control drive capability limited by the wave energy conversion quantity, the engineering fulfilment of the power generation network is hindered. From the above reason, this project investigation concentrates on the two essential problems including the physical structure optimization and synchronous power output control of the power generation network in order to realize the synchronous tracking control accurately of the power demand-supply matching under active control drive capability constraint. First, the communication topology of the power generation network is determined through the synthesis analysis of the synchronized region analysis and the maximum matching principle, starting originally from synchronization, controllability and observability of the network. The sets of the minimum control drive and observation nodes furtherly are identified by analyzing the drive capability of the state nodes of the augmented power generation network so that the optimal network topology structure and resource allocation scheme spending the minimal controllers and sensors resource is ascertain for guaranteeing satisfying synchronization performance. Then, synchronous power output control of the power generation network under active control drive capability constraint is divided into two sub-problems which are a planning problem of the phase trajectory of the network state space and a tracking control problem along the trajectory. Furthermore, using the structure decomposition and multi-layer hierarchical control ideology in the large scale systems control theory for reference, the adverse influence on the synchronous control performance induced by control drive capability shortage can be alleviated by employing decomposition planning and hierarchical control methodology. Finally, the power generation network can accurately respond to power demand, as well as obtain smooth electricity supply continuously with the optimal topology and the allocation scheme expending minimal controllers and sensors resource.
以直驱波能发电网络实现区域波能采集,为解决波能采集范围小、效率低、电能质量差等问题提供了新思路。本项目围绕主动控制驱动能力受波能采集量约束下,直驱波能发电网络电力供需匹配的核心问题,探索直驱波能发电网络物理结构优化与同步供电控制两个关键问题。首先,从发电网络可同步性与能控能观性出发,结合网络同步域分析与最大匹配原理,确定发电网络通信拓扑,再根据网络最小输入原理与对偶性,辨识状态节点增广发电网络最小驱动与观测节点集,分析状态节点驱动能力,确定控制驱动与感知资源最小配置,获得发电网络最优物理结构,保证良好同步性能;其次,将主动控制驱动受限下发电网络同步供电控制分解为网络相轨迹规划与跟踪两个子问题,借鉴复杂大系统理论结构分解和分层递阶思想,以分解规划、递阶控制的思路,提高控制驱动受限下发电网络同步供电控制的性能。最终使发电网络以最优网络结构和最小资源配置,准确响应用户供电需求,实现连续平稳供电。
以直驱波能发电网络实现区域波能采集,为解决波能采集范围小、效率低、电能质量差等问题提供了新思路。本项目围绕主动控制驱动能力受波能采集量约束下,直驱波能发电网络电力供需匹配的核心问题,探索直驱波能发电网络物理结构优化与同步供电控制两个关键问题。首先,以一种直驱式发电装置,阿基米德浮子波能发电系统(AWS)为研究对象,对系统的浮子建模、永磁直线发电机(LPMG)建模、最大功率追踪控制、三相电压型整流器(VSR)控制以及储能单元的功率平滑控制等问题进行研究。针对波浪能量发电装置最大功率追踪控制,研究了规则/不规则波浪力条件下,最大功率跟踪问题,按典型II型系统对PI控制器参数进行设计,实现电流追踪的快速性和抗干扰性。通过空间电压矢量脉宽调制(SVPWM)控制实现对三相VSR的控制。同时,研究了储能单元在波能发电系统输出功率平滑中的作用,以平滑波浪能发电机的输出功率,通过电池储能对输出功率进行补偿和存储,实现了发电机输出电压和功率维持在一定范围内。其次,研究了波浪能发电网络的可控性,以及发电网络的结构配置。以此为基础,将波浪能发电网络供电控制分解为波能捕获控制、转换控制以及供电控制三个控制阶段,按照分层递进的思想,通过在前端采用网络化建模的方法建立具有内联结构的波能发电模型,采用模型预测控制的方法,实现区域采集波能发电阵列的最大波浪能量采集,结合中间段单个波能发电单元的最大功率追踪控制,进一步提高波浪能的采集效率。 最后,通过最优分配控制算法,根据用户动态波动的供电需求,对波浪能发电集群阵列中,单个发电单元的输出功率进行分配,确保用户供电需求准确响应的同时,确保每个发电单元的负载功率与自身发电状态条件相互匹配。通过自制研发的波浪能发电实验系统上模拟实验结果证明,三级控制算法能够输出更多功率,并且确保了储能单元中能量存储的一致,同时保证了输出功率的平滑性和准确性。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
跨社交网络用户对齐技术综述
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
城市轨道交通车站火灾情况下客流疏散能力评价
波能直驱式直线开关磁阻发电系统整体建模及控制策略的研究
电网故障下永磁直驱式风力发电机运行与控制
含飞轮储能单元的直驱永磁同步风力发电系统研究
直驱式波浪发电系统的控制与联网运行