In many work, we use only the approximate values of irrational numbers which can be defined as the infinite non-repeating decimals. Series expansions of the irrational number and its reciprocal are significant to the research for the approximate value of an irrational number. The hypergeometric method, difference operator theory and WZ method are the regular methods in combinatorics. The purpose of the project is to explore systematically the series expansions of ratio of the circumference, Euler-Mascheroni constant, primes to the opwer of 1/n where n is a natural number greater than 1 and their reciprocals in terms of the three methods just mentioned, and consider the applications of the rapid convergence series expansions of them to the study for the approximate values of ratio of the circumference, Euler-Mascheroni constant and primes to the opwer of 1/n.
无理数可以被定义为无限不循环小数,在许多工作中,我们只使用其近似值。对研究一个无理数的近似值而言,这个无理数及其倒数的级数展开式均具有重要意义。超几何方法、差分算子理论和WZ方法是组合数学中常用的方法。本项目旨在利用这三种方法,系统地探索圆周率、Euler-Mascheroni 常数、素数的1/n(n是大于1的自然数)次方及它们的倒数的级数展开式, 并且考虑其中快速收敛的级数展开式在圆周率、Euler-Mascheroni常数与素数的1/n次方的近似值研究中的应用。
由于无理数可以被定义为无限不循环小数,所以我们在理论研究和工程计算中经常使用其近似值。而无理数及其倒数的级数展开式对无理数近似值的研究具有重要意义。在本项目中,我们利用组合数学方法给出了很多圆周率的m(m是一个正整数)次方及其倒数的级数展开式,许多蕴含同Euler-Mascheroni常数密切相关的调和数的级数公式与一些素数的1/2次方的级数展开式。相关的研究成果既能够促进圆周率、Euler-Mascheroni常数与素数的1/2次方的近似值的研究,又可以拓广组合数学方法的应用范围,为其它无理数的级数展开式的探索提供新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni
展开式天线的结构分析和形态研究
椭圆超几何级数的研究
q-级数恒等式的研究
Heegner点和Eisenstein级数的算术