Nonlinear parabolic equations are widely used in the fluid dynamics, weather forecasting, inertial confinement fusion and other related fields. It is an important topic to design positivity preserving schemes which are able to adopt to both complicated domains and complicated grids, of this kind of nonlinear problems. This proposal is to study virtual element methods, corresponding adaptive algorithms and extrapolation cascadic multigrid methods, time extrapolation algorithms, of this class of nonlinear problems. One aim is to construct positivity preserving high accurate numerical methods which are able to adopt to both complicated domains and complicated grids for them. The other aim is to extend these schemes to three temperature radiation diffusion equations and develop robust approximate methods with respect to mesh deformation for them. Above all, through this collaboration, the young co-investigator will become stronger and stronger.
非线性抛物型方程在流体动力学、气象预报和惯性约束核聚变等领域中有广泛应用。对这类非线性问题,设计适用于复杂区域和网格并且具有保正性的格式是重要的研究问题。本项目拟研究这类非线性问题的虚拟元方法及其自适应算法、新型的时间外推算法与虚拟元的外推瀑布多网格方法,从而构造适用于复杂区域和网格、具有保正性的高精度离散格式,建立相应的数学理论;将所设计的离散格式推广应用到三温辐射扩散方程组,发展对网格变形稳健的离散格式。同时,通过项目的合作研究,为合作单位培养年青学者。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
低轨卫星通信信道分配策略
基于多模态信息特征融合的犯罪预测算法研究
抛物型微分方程反问题的数值方法及其应用
抛物型随机偏微分方程的数值计算方法
非线性抛物方程有限体积元方法的理论研究及应用
基于能量变分方法数值求解两类非线性非局部退化抛物方程