Bio-inspired smart nanochannel materials for intelligent control of molecule and ion transports at the nanoscale have attracted extensive research interests in recent years owing to their wide potential applications in nanofluidics, energy conversion, and biosensors. The asymmetry of shape and surface chemical component is the key factor to fabricate bio-inspired smart nanochannels. At present, however, researches on the artificial functional nanochannels with controllable asymmetry still in the early stage, and less works have been reported. In this project, we will build bio-inspired multifunctional nanochannels based on continuous control of the shape and surface properties asymmetry of the nanochannels. Through asymmetrically modifying the two sides of the asymmetric polymeric nanochannels with gradual shape transformation by various smart molecules, a series of double-gated and multi-responsive nanochannels with continuous and controllable asymmetric shape and surface properties will be obtained. The ion translocation process will be characterized via the transmembrane currents or potentials under external stimuli. Relationship among the shape, surface properties and functions of the intelligent nanochannels will be systematically investigated. Inspired by the biological asymmetric ion channels, the applicant will build a novel biomimeitc smart system based on the asymmetric assembling of the nanochannels, smart molecules and other functional building blocks. The well-studied mechanism between the shape, surface properties, and functions of the nanochannel will play a important role in the shape design and surface property construction of building bio-inspired nanodevices based on the smart ion translocation.
仿生智能纳米通道因其在纳米流体器件、能源转换和生物传感领域具有广阔的应用前景,近年来在国内外引起广泛的研究兴趣。其中结构和组成的非对称性是仿生制备智能纳米通道的关键因素,但是目前对仿生智能纳米通道非对称性调控方面还鲜有报道。本项目拟开展基于结构和组成非对称性可调控的仿生智能纳米通道的研究。通过在结构非对称性可连续调控的聚合物通道两端非对称修饰智能响应性分子,得到一系列结构和组成非对称性可调控的双门控、多响应智能纳米通道,利用测定通道跨膜电流或电势的方法表征其智能离子传输过程,并系统研究非对称结构、组成和功能之间的关系。本计划受生命体内的具有特殊功能的纳米通道的启发,将具有特殊仿生结构的聚合物纳米通道和智能分子作为组成基元进行非对称组装,拟构筑新型的仿生智能离子传输体系。在解决基础科学问题的同时将对发展基于仿生纳米通道体系的智能纳米器件具有重要的指导意义。
仿生智能纳米通道因其在纳米流体器件、能源转换和生物传感领域具有广阔的应用前景,近年来在国内外引起广泛的研究兴趣。其中结构和组成的非对称性是仿生制备智能纳米通道的关键因素,但是目前对仿生智能纳米通道非对称性调控方面还鲜有报道。本项目开展了基于结构和组成非对称性可调控的仿生智能纳米通道的研究。首先通过控制孔道制备条件,制备了一系列具有不同非对称结构的纳米通道,并对纳米通道的离子传输性质进行了详细的研究。其次,通过在结构非对称性可连续调控的聚合物通道两端非对称修饰智能响应性分子,得到一系列结构和组成非对称性可调控的双门控、多响应智能纳米通道,并系统的研究非对称结构、组成和功能之间的关系;最后,初步研究了纳米通道内不同液体的浸润阈值,为进一步调控孔道内的分子离子传输提供了重要依据。本计划受生命体内的具有特殊功能的纳米通道的启发,将具有特殊仿生结构的聚合物纳米通道和智能分子作为组成基元进行非对称组装,构筑了新型的仿生智能离子传输体系。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
低轨卫星通信信道分配策略
物联网中区块链技术的应用与挑战
人工智能技术在矿工不安全行为识别中的融合应用
Wnt 信号通路在非小细胞肺癌中的研究进展
声动力治疗通过诱导动脉粥样硬化进展期斑块泡沫细胞经线粒体凋亡介导S1P爆发并激活单核巨噬系统清除功能
MACF1通过FOXO1/β-catenin通路调节成骨细胞抗氧化参与模拟失重抑制骨形成的机制研究
仿生纳米通道智能隔膜的能量转换特性研究
基于仿生离子通道的智能调控型微纳米多孔电池隔膜材料的制备及研究
基于非对称浸润性的仿生纳米通道:智能门控机理和器件研究
非局部非线性系统的对称性和可积性研究