In recent years there has been increasing interest in directly solving the contracted Shr?dinger equations for k-particle reduced density matrices (or their corresponding cumulants). Just like wavefunctions, reduced density matrices are not extensive (additively separable). However, the corresponding cumulants are of this important property, and scale linearly with respect to the number of electrons. Therefore, it is more appropriate to focus on cumulant-based formulations. This tempting project aimed to develop cumulant-based multi-configuration self-consistent field (MCSCF) theory and program. Due to limited time and great difficulties, the whole project has not yet been finished. However, significant progresses have been made in the formulations.
近年来,直接求解约化密度矩阵(或其累积量)的紧缩薛定愕方程成为多体理论的一个热点。像波函数一样,约化密度矩阵不是可加合量,但它的累积量却具有可加合性,即与电子数目成线性标度,因此应直接求解累积量的方程。本课题旨在发展基于累积量的多组态自洽场理论及程序,属探索性研究。由于时间关系和工作的难度,研究工作尚未完成,但在理论方面已取得一定进展。
{{i.achievement_title}}
数据更新时间:2023-05-31
汽车侧倾运动安全主动悬架LQG控制器设计方法
基于粒子群优化算法的级联喇曼光纤放大器
一类随机泛函微分方程带随机步长的EM逼近的渐近稳定
基于脉冲微分方程的COVID-19境外输入型病例对我国疫情防控影响的分析
长三角城市群碳排放、能源消费与经济增长的互动关系——基于面板联立方程模型的实证
求解大规模矩阵问题的非准确方法和全局投影方法
低秩矩阵恢复的非凸松弛模型的理论与数值求解方法
求解线性和非线性约束矩阵方程的理论与算法研究
不适定问题求解的理论和方法