Elastic multi-structures are widely used in many fields of the national defence and ordinary life. It is both theoretical and.practical importance to give the study on their numerical solutions. For the construction of new-type finite elements, the aim of the project is only for two-component problems, but we have obtained results for elastic multi-structures consisting of an arbitrary number of components. It is a breakthrough in the numerical analysis.of elastic multi-structures. The related TRUNC element method, mortar element method and mixed element method are also discussed, and the resulting manuscripts have been submitted. For the domain.decomposition, some important results have been achieved for the body-plate model, which will appear in Math. of Comp. We are creating a software package for our algorithms to simulate the deformation of.ocean platforms. There have appeared (or have been accepted for publication) 14 papers, including 6 SCI ones and 3 EI ones. We have completed the task of the project smoothly.
组合弹性结构广泛应用于国防和国民经济诸部门,对它的有效数值求解有很大实用价值,已有方法主要为低次、位移型有限元素法,远未完善。本项目拟研究建立求解该问题若干新型有效有限元素法并构建相应离散问题的合理区域分解求解算法。该问题子域模型物性相异,不同于常规问题。因此本项目研究还可望为有限元素法和区域分解法带来新的发展方向。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
基于被动变阻尼装置高层结构风振控制效果对比分析
基于改进LinkNet的寒旱区遥感图像河流识别方法
基于MCPF算法的列车组合定位应用研究
现代优化理论与应用
纳米AxMg1-xAl2-yByO4颜料的结构调变与光谱调控--应用于5G智能设备用彩色氧化锆陶瓷
有限元概率算法及区域分解法
多尺度有限元方法的区域分解和多重网格法
三维N-S方程新型完全重叠型区域分解有限元并行算法研究
用于涡流计算的分解区域有限元法研究及其在磁光成像仿真中的应用