GPS-only PPP-RTK (Precise Point Positioning based on Real-Time Kinematic networks) encounters the problem of relative long time to first fix (TTFF) of ambiguity resolution and low reliability of ambiguity-fixed solutions, making PPP-RTK unable to be widely used in the field of real-time high-precision location services. This project is to study the key models and theoretical methods of multi-constellation and multi-frequency GNSS undifferenced and uncombined PPP-RTK to improve the application level of PPP-RTK in real-time precise positioning. The key issues of the project are as follows: 1) Establishing the Kalman filtering model of estimating real-time multi-frequency phase fractional cycle bias (FCB) based on the undifferenced and uncombined PPP processing, improving the computational efficiency and model flexibility for FCB estimation. 2) Investigating a hybrid strategy for PPP ambiguity resolution to solve the problem of low reliability of single ambiguity resolved method in real-time scenarios. 3) Optimizing the gird modeling of real-time high-precision atmospheric delay, providing an effective scheme for evaluating the accuracy of the grid-based atmospheric delay. 4) Refining the function and stochastic models of atmospheric delay enhanced PPP, improving the positioning performance of PPP-RTK. Based on the research results, the multi-constellation and multi-frequency GNSS undifferenced and uncombined PPP-RTK software is developed and the related products and services for PPP-RTK applications are provided, which provides effective technical and theoretical support for GNSS real-time high-precision location services.
针对单GPS系统PPP-RTK技术存在首次模糊度固定时间较长、固定可靠性不高的问题,本项目研究多星座多频率GNSS非差非组合PPP-RTK定位关键模型及理论方法,以提升PPP-RTK技术在实时高精度位置服务领域的应用水平。主要研究内容包括:1)基于非差非组合PPP,构建基于卡尔曼滤波的实时多频率相位小数周偏差(FCB)估计模型,提升FCB计算效率与估计模型的灵活性;2)研究PPP模糊度固定的混合策略,解决实时场景下单一模糊度固定方法可靠性较低的问题;3)优化实时高精度大气延迟格网模型,提供评估格网大气延迟精度的有效方案;4)精化大气延迟增强PPP的函数模型与随机模型,提升非组合PPP-RTK的定位性能。根据上述研究成果,开发多星座多频率GNSS非差非组合PPP-RTK软件并提供PPP-RTK相关产品和服务,为GNSS实时高精度位置服务提供有效的技术与理论支撑。
精密单点定位(PPP)技术能够提供全球高精度定位结果,但存在定位收敛时间长的技术难题,从而影响其大规模应用。针对PPP收敛速度慢、模糊度固定可靠性不高等问题,本项目构建了基于模糊度固定技术的大气延迟增强非组合PPP-RTK模型,以期解决上述问题。基于此,建立了基于卡尔曼滤波的实时相位小数偏差估计模型,探究该模型下合理的质量控制策略;在精细考虑伪距和载波相位硬件偏差时变特性的基础上,导出了更为严谨的非差非组合观测方程,并给出了非组合模式下两类GNSS偏差的数学表达形式,在此基础上精化PPP函数模型与随机模型;将最优整数等变(BIE)估计引入PPP模糊度估计过程中,利用GNSS模糊度整数解加权融合以获得最优浮点模糊度估计值,可有效回避模糊度错误固定风险,同时又利用了模糊度整数解信息来提升模糊度估值精度,从而提升PPP定位精度,缩短模糊度收敛时间。在本项目的资助下,发表SCI论文3篇,EI论文3篇,授权发明专利1项。本项目研究的技术与方法适用于大区域、复杂场景的实时高精度位置服务,理论意义与实用价值较突出,在无人驾驶、智能交通、精细农业等领域有广泛的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
低轨卫星通信信道分配策略
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
基于非差非组合模型的多频GNSS大网并行解算方法研究
多GNSS组合精密单点定位非差模糊度快速固定方法
多频率多系统GNSS实时高频精密钟差快速估计关键技术
多频多GNSS非组合PPP模糊度固定模型与方法研究