Battery energy storage systems (BESS) are indispensable to dissolve large-scale power generation of intermittent renewable energy, to improve the utilization of renewable energy and to enhance security and flexibility of electricity grid. However, there are still great challenges ahead on establishing multi-objective and flexible design of BESS to adapt to different scenarios and goals of energy storage when thermal behaviors, aging and capacity fading are taken into consideration. In this project, from the perspective coupling chemical reaction, transport processes and process systems integration on BESS, a streamlined research path along “electrochemical reaction - transport processes - system integration - system optimization” on BESS is proposed, in which integration strategies coupling processes with systems in different time scales are involved. A systematic investigation on BESS will be performed, including simulations of thermal behaviors and capacity fading characteristics of Lithium Ion (Li-Ion) batteries, integration of the multi-period BESS crossing different time scales, flexible design of BESS adapted to different scenarios and various objectives and multi-objective optimization methods as well. On the basis of interactions between the electrochemical- thermal behaviors and dynamical mechanism of capacity fading of batteries, the multi-scale coupling mechanism for the integration and optimization of the multi-period BESS with capacity fading of batteries will be clarified, and the multi-period and multi-objective optimization methods for the flexible design of BESS will also be established. The major contributions of this project are expected to provide theoretical fundamentals and analysis tools for optimal design and performance evaluation of ecnomic, safety and environment-friendly BESS.
为了消纳间歇可再生能源的大规模发电,提高可再生能源利用率,增强电力系统的安全性和灵活性,储能电池系统具有不可替代的作用。然而,电池的产热、老化和容量衰退使得适应不同应用场景和目的储能电池系统的多目标柔性设计面临巨大挑战。本项目拟从电化学反应和传递过程与电池系统耦合集成设计的角度出发,提出以“电化学反应-传递过程-系统集成-系统优化”的跨时间尺度过程与系统耦合设计策略为主线,通过对锂离子电池产热与容量衰退动力学过程模拟、跨时间尺度的多周期储能电池系统集成、适应不同应用场景和目的储能电池系统柔性设计和多目标优化的系统研究,在探究电池产热特性与容量衰退动力学关联机制基础上,阐明电池容量衰退动力学与多周期储能电池系统集成设计和优化的跨时间尺度耦合作用机制,构建储能电池系统多周期-多目标柔性设计与优化的系统方法,为经济、安全、环保的储能电池系统集成设计与优化和储电性能评估提供基础理论方法和分析工具。
针对储能电池系统容量配置、优化设计和优化调度等问题,本项目以“电化学反应-传递过程-系统集成-优化调度”为主线,构建了跨时间尺度的电化学过程与储能电池系统耦合优化设计的系统方法。研究了锂离子电池产热与容量衰退动力学过程耦合作用机制,阐明了锂离子电池SEI膜生长和电极厚度对电池动态性能的影响,并提出了通过脉冲充放电改善电池容量衰退特性的策略;研究跨时间尺度的多周期储能电池系统集成策略,考虑电池容量衰退特性,构建了考虑供需特性变化的储能电池系统容量配置和功率调度方法;面向多种应用场景,构建了多种类电池储能电池系统容量配置的通用优化模型和多目标优化方法;基于电池的生命周期分析和容量衰退动力学,构建了从动力电池到储能电池应用的多目标操作优化方法。本项目的研究成果将为经济、安全、环保的储能电池系统优化设计、优化调度和性能评估提供基础理论依据和定量分析方法,为可再生能源利用中电化学反应工程、传递过程和过程系统工程等化学工程学科基础理论的应用和拓展架设了综合集成与优化的桥梁。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
基于铁路客流分配的旅客列车开行方案调整方法
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
一种基于多层设计空间缩减策略的近似高维优化方法
复杂系统科学研究进展
基于电池多应力耦合衰退机理的新老储能单元并联协作优化策略研究
基于多类型大容量电池储能系统的风光发电平滑控制策略研究
全钒液流电池储能系统建模及其全生命周期运行策略优化研究
基于储能储水的水热电集成系统优化设计