Recently, the study of contact structures on 3-dimensional manifolds becomes one of the active topics in low dimensional topology. This project will study the Stein fillings of contact 3-manifolds and Stein cobordism between them; tightness of contact 3-manifolds; the Ozsvath-Szabo invariants of contact 3-manifolds. Precisely, we will try to look for the maximal contact 3-manifolds with respect to the Stein cobordism; compute the Ozsvath-Szabo invariants of the contact +1 surgeries along Legendrian links; study the existence of tight contact structures of hyperbolic 3-manifolds. The study of these problems will shed new light on the topology, geometry, and invariants of contact 3-manifolds.
三维流形上的切触结构的研究是近年来低维拓扑中的活跃课题之一。本项目将主要研究切触三维流形的Stein填充和Stein配边,切触三维流形的tight性质和Ozsvath-Szabo不变量。具体来说,在本项目中,我们将寻找在Stein配边意义之下的最大元素;将计算沿着Legendrian链环做切触+1手术的Ozsvath-Szabo不变量;将研究双曲三维流形的tight切触结构的存在性。这些问题的解决将有助于加深人们对切触三维流形的拓扑、几何、以及它们的各种不变量的了解和认识。
与Motoo Tange合作,首次发现存在勒让德纽结具有不光滑同痕的拉格朗日填充。与丁帆和吴忠涛合作,从切触手术的角度,得到了切触三维流形具有平凡的Floer不变量或者过度扭转的充分条件。与Austin Christian合作,在微分同胚意义下解决了透镜空间的辛填充问题,并把小的Seifert流形的恰当填充问题归结为典型的或者万有胎紧的切触小的Seifert流形的恰当填充问题。与丁帆和吴忠涛合作,研究了三维流形辛可填充的切触结构的存在性问题。 与张雨荷合作,研究了某些切触循环分支复叠上的恰当填充的地理学问题。
{{i.achievement_title}}
数据更新时间:2023-05-31
Enhanced piezoelectric properties of Mn-modified Bi5Ti3FeO15 for high-temperature applications
BiVO4/Fe3O4@polydopamine superparticles for tumor multimodal imaging and synergistic therapy
Synthesis of an oligomeric thickener for supercritical carbon dioxide and its properties
SUMO特异性蛋白酶3通过调控巨噬细胞极化促进磷酸钙诱导的小鼠腹主动脉瘤形成
A poly(1,3-dioxolane) based deep-eutectic polymer electrolyte for high performance ambient polymer lithium battery
三维流形上的切触结构
三维流形上的tight切触结构
四元切触流形与八元切触流形上的几何与分析
切触流形上Reeb流的闭轨道及其几何性质