In China, the multi-span simple-supported beam bridge and the ballastless track which were commonly used in high-speed railways are typical multi-periodic structures. The assessment and control of vibration performance of the periodic bridge-track structure is a key problem that need be solved in the construction and operation of high-speed railways. However, the current research still lacks in-depth understanding about the propagation characteristics of elastic waves in the periodic bridge-track structure. And there are still lack of effective theoretical and experimental methods for the evaluation and control of vibration performance. The theory of phononic crystals for analyzing vibration of the periodic structures from the solid physics is introduced in this subject. Using the transfer matrix method,the spectral element method, the finite element method with periodic boundary conditions etc., the theoretical analysis model of vibration in wide frequency band for the periodic bridge-track structure is established. Validation and optimization of the theoretical analysis model are studied by using the scale model experiment and field measurement method. The bandgap characteristics, elastic wave transmission characteristics and vibration response characteristics of the periodic bridge-track structure are analyzed. Vibration control mechanism of the bridge-track by using a new type of phononic crystal-type vibration damping device is revealed. Based on the phononic crystal theory, a evaluating and controlling method for vibration of high-speed railway bridge-track is proposed. The research results will guide the dynamic design, evaluation and control of vibration performance for high-speed bridge-track structure from a new perspective, and also provide theoretical basis and technical guidance for the prediction, assessment and control of the wheel-rail dynamics, environmental vibration, wheel-rail noise, and bridge structure noise and so on.
我国高速铁路常用的多跨简支梁桥及桥上无砟轨道构成典型的多重周期性结构。针对周期性桥梁-轨道的振动性能评估与控制为高铁建设运营需解决的关键难题。然而当前研究对弹性波在周期性桥梁-轨道中的传播特性还缺乏深入理解,对振动性能评价和控制还缺乏有效的理论和实验方法。课题引入固体物理学中分析周期结构振动的声子晶体理论,采用传递矩阵法、谱元法、周期性有限元法等,建立周期性桥梁-轨道振动的宽频段理论分析模型;研究理论模型的缩尺模型、现场实测等实验验证及优化;分析周期性桥梁-轨道的带隙特性、弹性波传输特性及振动响应特性,揭示新型声子晶体型减振装置对桥梁-轨道的振动控制机理;提出基于声子晶体理论的周期性桥梁-轨道振动评估与控制方法。研究成果将从新的视角指导高铁桥梁-轨道的动力学设计、评价与控制;为轮轨动力学、环境振动、轮轨噪声及桥梁结构噪声等的预测、评估和控制提供理论基础和技术指导。
我国高速铁路常用的多跨简支梁桥及桥上无砟轨道构成典型的多重周期性结构。针对周期性桥梁-轨道的振动性能评估与控制为高铁建设运营需解决的关键难题。然而当前研究对弹性波在周期性桥梁-轨道中的传播特性还缺乏深入理解,对振动性能评价和控制还缺乏有效的理论和实验方法。课题采用传递矩阵法、平面波展开法建立周期轨道平面梁模型,分析了轨道梁结构中弹性波带隙特性,并通过现场锤击实验进一步验证了周期性轨道结构中带隙特性;基于能量泛函变分原理,提出了一种混合解法来计算周期性梁板复合结构的带隙特性;对传统能量法进行改进,通过引入人工弹簧来模拟包含周期边界在内的各类边界条件,提出了兼具准确性、效率性和适用性的基于人工弹簧模型的周期结构带隙计算方法;采用人工弹簧模型和能量泛函变分法建立了空间耦合板箱梁导波频散特性分析模型,系统地分析了混凝土箱梁结构中导波的频散特性;在此基础上,针对箱梁结构中弯曲波控制,研究了周期性附加TMD和TMDI对箱式结构导波频散特性的影响,探讨了箱梁结构中弹性波调控的可行性;针对钢轨的弯曲波调控,对比评估了周期性附加调谐质量阻尼器(TMD)和调谐质量阻尼惯容器(TMDI)对钢轨弯曲波的调控效果;针对轨道板的弯曲波调控,分析了轨道板参数对轨道结构带隙特性的影响,并进一步探讨了附加惯性增强装置对轨道板中传播的低频弯曲波的影响。在此基础上,提出振幅放大思想,设计了一种新型钢轨动力吸振器,结合位移导纳和振动加速度级的结果研究和评估了振幅放大型动力吸振器的减振效果。研究成果将有助于更深入地理解轨道结构中振动波的传播特性,准确评估弯曲波在轨道各分量中传播的频率范围,进而为轨道-桥梁结构减振降噪提供理论基础和技术指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
城市轨道交通车站火灾情况下客流疏散能力评价
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
基于声子晶体理论的饱和地基上周期性高架桥与隧道结构振动特性研究
水下压电声子晶体结构振动与声辐射特性研究
基于声子晶体的周期结构埋地管道振动带隙特性与减振方法研究
基于局部振动的轨道桥梁结构噪声预测方法及控制策略