With the construction and development of high-speed railway network, the power quality problems of traction power system become more serious. According to the power quality control urgent needs of traction power system, the project is intended to research the integrated equivalent model of traction power system which includes three-phase grid side and the secondary traction side. It will analyze the operating mechanism of traction power system essentially, and research the distribution characteristics of negative sequence, reactive and harmonic flows in the power system. On this basis, the project is intended to research two power-electronic mixed compensators for high-speed railway power system. One is power electronic mixed system in the three-phase grid side, which is composed of Cascaded Static Var Generator (SVG) and multiple sets of Thyristor Switched Filters (TSFs), which is used to achieve the efficient dynamic negative sequence, reactive current compensation and harmonic suppression. Its operating principle, mathematical description method and mixed control theory will be researched. The other is power-electronic mixed system in the secondary traction side, which is composed of Railway static Power Conditioner (RPC), multiple sets of Thyristor Switched Reactors (TSRs) and Thyristor Switched Capacitors (TSCs). Its large-capacity topology, vector analysis method, capacity optimization method and mixed control strategy will be researched. .Through systematic comparative analysis of these two mixed system, it will provide relevant theoretical and technical basis for power quality control and compensation of traction power supply systems; at the same time we will research the key theoretical issues of mixed systems, such as unified mathematical model, the coupling characteristics and coordinated control mode, which can help to establish universal theory and technology of power-electronic mixed system. The aim of this project is to make an innovation on the common theory of power-electronic mixed systems, and to provide theoretical and technical support for the application of mixed systems in China. So it has an important theoretical and practical value.
随着高铁网络的建设和发展,牵引供电系统的电能质量问题越来越严峻。本项目根据高速铁路供电系统电能质量治理的迫切需求,拟研究牵引供电系统三相配网侧和二次牵引侧的一体化等效模型,从本质上剖析牵引供电系统的运行机制,研究供电网的负序,无功和谐波潮流的分布特性。在此基础上,拟研究两种高速铁路供电系统用电力电子混杂补偿系统:研究三相配网侧电力电子混杂系统的工作原理、数学描述方法和混杂控制理论;研究二次牵引侧电力电子混杂系统的结构模型、矢量分析方法、容量优化方法和混杂控制策略。通过上述两种电力电子混杂系统的对比分析,将归纳研究混杂系统的一般数学模型、耦合特性及协同控制模式等关键理论和技术问题,有助于建立通用化的电力电子混杂系统理论和技术。项目旨在电力电子混杂系统上实现创新,为我国电力电子混杂系统应用提供理论和技术支撑,将为牵引供电系统的电能质量治理提供相关理论和技术基础,具有重要的理论和应用价值。
由于高速铁路供电系统的机车和特殊供电结构,会给三相电网侧注入大量的无功、负序和谐波电流,同时由于日益增加的机车功率和发车密度,牵引系统中的电能质量问题也越来越严重。为此,本项目对此进行了分析和研究,主要研究成果如下:.①.考虑V/V、SCOTT牵引供电系统,研究了五种典型的铁路功率调节器(RPC)拓扑结构,对五种补偿装置的隔离特性、单元模块数量、IGBT数量、电容数量、器件的电压和电流应力等参数的进行了定量对比分析,为高速铁路系统大功率补偿装置的拓扑结构设计奠定了基础。.②.为了降低补偿装置的有源部分的容量和整体成本,提出了二次牵引侧的RPC+SVC型混杂补偿系统及其动态博弈控制策略。首先分析了V/V铁路牵引系统的负载离散跳跃模型及其补偿原理,对RPC+SVC型混杂补偿器的拓扑结构和容量进行了设计;在此基础上,提出了一种两级优化的动态博弈混杂控制系统,通过动态博弈方法,实现了离散SVC子系统和连续 RPC子系统的两级协同控制,并通过最优控制来控制RPC以实现负序电流最小化。.③.为了降低补偿装置的有源部分的容量和整体成本,提出了三相侧LC串联型SVG+SVC型混杂补偿系统及其协同控制策略。首先分析了V/V铁路牵引系统的负载离散模型,研究了三相侧的无功、负序补偿原理及需求,提出了一种三相侧SVG+SVC型混杂补偿系统,利用低成本TSC+TSR进行大容量无功、负序离散化补偿,然后利用全控型SVG来进行剩余无功、谐波的连续补偿治理;为了进一步降低系统的有源容量和成本,提出了一种LC串联式SVG及其状态反馈线性控制方法,实现SVG的高性能补偿和控制。.该项目完成了高速铁路供电系统电能质量分析和电力电子混杂补偿控制的理论和技术研究报告,为高速铁路供电系统的大功率补偿奠定了理论和技术基础。在国内外高水平学术刊物上发表论文11篇,其中SCI论文7篇,EI论文4篇,授权国家发明专利6项,申请国家发明专利2项。获得2017年湖南省创新团队奖1项、2018年国家创新团队奖1项、2019年湖南大学教学成果一等奖1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
中国参与全球价值链的环境效应分析
卫生系统韧性研究概况及其展望
高速电气铁路供电系统电能质量分析及混合有源补偿拓扑辨识
动态条件下的高速铁路牵引供电系统非线性谐振研究
高速铁路牵引供电系统RAMS评估的理论及其应用的研究
同相牵引供电系统理想模式的变换器及控制研究