群连通度和子图存在性及相关问题的研究

基本信息
批准号:11171129
项目类别:面上项目
资助金额:45.00
负责人:李相文
学科分类:
依托单位:华中师范大学
批准年份:2011
结题年份:2015
起止时间:2012-01-01 - 2015-12-31
项目状态: 已结题
项目参与者:熊黎明,孙良,刘红美,范琼,张小霞,黄明芳,杨帆,李良辰,刘维
关键词:
线图群着色超欧拉图算法容错性群连通度
结项摘要

1954年,Tutte教授在研究四色问题时,引进了整数流的概念。四色定理等价于任何平面图有处处非零4流。后来人们发现整数流问题与圈覆盖等图论问题有紧密的关系。1992年, Jaeger教授将整数流的概念推广为群连通度(group connectivity),群着色 (group coloring)作为群连通度的对偶提出来。群连通度本身在研究整数流时,有应用价值。Thomassen在1986年提出任何4-边连通的线图是Hamilton的。任何超欧拉图的线图是Hamilton的。因此,超欧拉图对研究Thomassen这个猜想有应用价值。超欧拉图、Hamilton圈的研究 本身就是子图的存在性问题。本项目的主要内容是:研究群连通度及相关问题, 包括群着色、3-流问题等;研究子图的存在性, 包括线图Hamilton性、超欧拉图等;作为子图存在性的应用,研究算法的容错性。

项目摘要

本项目主要研究图论中整数流、群连通度问题、欧拉子图的存在即网络容错性及相关问题,它包括图的处处非零的3-流问题、群连通度(Group connectivity)、 群着色问题及相关问题。 著名数学家Tutte教授(1954)提出的3-流猜想(Bondy和Murty的《Graph with applications》中未解决问题48):任何4-边连通图有非零3-流: 法国数学家 Jeager教授(1992) 把整数流问题推广到群连通度问题。而群着色问题作为群连通问题的对偶问题提出来的。 平面图的染色是与平面上的整数流等价。因此, 整数流问题、群连通问题和染色问题是图论研究的主流问题之一。 我们对对这些问题进行深入、系统的研究,取的一批重要成果。我们刻画了度条件与群连通性、 度系列与群连通性、禁用子图与群连通性、平面图的群着色。因为平面上整数流的问题和染色问题是等价的, 因此我们研究了平面图的着色以及强边着色等问题。我们还研究了线图的Hamilton性、度条件与欧拉连通子图的存在性, 因子的存在性和网络的容错性等问题。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于铁路客流分配的旅客列车开行方案调整方法

基于铁路客流分配的旅客列车开行方案调整方法

DOI:
发表时间:2021
2

珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征

珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征

DOI:10.7524 /j.issn.0254-6108.2017122903
发表时间:2018
3

向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选

向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选

DOI:10.7606/j.issn.1000-7601.2021.04.29
发表时间:2021
4

复杂系统科学研究进展

复杂系统科学研究进展

DOI:10.12202/j.0476-0301.2022178
发表时间:2022
5

基于多色集合理论的医院异常工作流处理建模

基于多色集合理论的医院异常工作流处理建模

DOI:
发表时间:2020

李相文的其他基金

批准号:10571071
批准年份:2005
资助金额:22.00
项目类别:面上项目
批准号:11571134
批准年份:2015
资助金额:50.00
项目类别:面上项目

相似国自然基金

1

图的群连通度和群着色

批准号:11126113
批准年份:2011
负责人:安新慧
学科分类:A0409
资助金额:3.00
项目类别:数学天元基金项目
2

凯莱图的整数流、群连通度问题的研究

批准号:11326215
批准年份:2013
负责人:杨帆
学科分类:A0409
资助金额:3.00
项目类别:数学天元基金项目
3

图的瑕疵染色与群连通度的若干问题

批准号:11861069
批准年份:2018
负责人:黄子文
学科分类:A0409
资助金额:40.00
项目类别:地区科学基金项目
4

偶子图覆盖、整数流与群连通及路分解问题研究

批准号:11271348
批准年份:2012
负责人:侯新民
学科分类:A0409
资助金额:60.00
项目类别:面上项目