Optical fiber sensing can perceive electrical equipment state parameters based on its own characteristics of light variations, which is followed with increasing interest in the field of electrical equipment monitoring. But the limited detection sensitivity and accuracy are the restrictions which affect their widespread application. This project studies the key technology of electrical equipment operation state multi-parameters based on passive optical fiber sensing. (1) Carrying out a research on sensing method of characteristic gas concentration and insulating gas pressure based on Raman fiber; revealing the influence mechanism on laser and Raman scattering transmission caused by material and structure of the optical fiber; constructing a fiber grating resonator and control method and establishing a trace gas quantitative model based on Raman fiber sensor; realizing the simultaneously accurate detection of characteristic gas concentration and insulation gas pressure using passive optical fiber. (2) Studying passive micro-optical fiber partial discharge sensing method based on F-P cavity; revealing the influence mechanism on interference light intensity and frequency response of ultrasonic caused by optical and mechanical behavior of graphene diaphragm; combined with fiber current sensor, establishing partial discharge ultrasonic-electricity sensing method for locational and quantitative evaluation. (3) Studying on temperature sensing method based on fluorescence quantum-dot film photonic bandgap fiber; revealing the synergistic variation relationship between quantum-dot film photonic crystal spectral characteristics and temperature; realizing the distributed and accurate fiber measurement of internal temperature of electrical equipment. Thus, this project will lay a foundation for realizing and popularizing multi-parameters sensing of electrical equipment operation state based on passive optical fibers.
光纤传感以其特有的光波特征变化感知设备状态参量,日益在电气设备状态在线监测领域被关注;但受限的检测灵敏度和准确度是该技术被广泛应用的瓶颈。项目开展电气设备运行状态多参量无源光纤传感关键技术研究:研究拉曼型光纤气体浓度及压力传感方法,揭示光纤材料、结构对激光和气体拉曼散射光传播的影响机理,构建光纤光栅谐振腔及调控方法,建立微量气体拉曼型光纤传感定量计算模型,实现特征气体浓度及绝缘气体压力的无源光纤准确检测。研究无源微光纤法珀干涉腔局部放电传感方法,揭示石墨烯膜片光学和力学特性对干涉光强及超声波频率响应的影响机理,结合光纤电流传感建立局部放电声电联合光纤传感准确定位与定量方法;研究荧光光谱型量子点薄膜光子带隙光纤温度传感方法,揭示量子点薄膜光子晶体光谱特征参数与温度间的变化协同规律,实现设备内部温度的光纤分布式准确检测。为实现无源光纤传感在电气设备运行状态多参量在线监测领域的普及应用奠定基础。
光纤传感以其特有的光波特征变化感知设备状态参量,日益在电气设备状态在线监测领域被关注。项目以电气设备运行状态多参量无源光纤传感关键基础科学问题为中心,解决了电气设备运行状态多参量无源光纤传感多个关键问题:.1)建立了拉曼型无源光纤特征气体浓度及绝缘气体压力传感方法,揭示了光纤材料、结构对激光和拉曼光传播的影响机理,搭建了空芯光纤谐振腔增强拉曼光谱气体检测系统,实现了电力装备状态特征气体的光纤高灵敏检测,N2、O2、CO2、CO、CH4、C2H6、C2H4、C2H2、SO2、SO2F2、COS、H2S、CF4、SF6等气体的检出限达到了亚μL/L量级;获取了拉曼强度与气体分压、激光功率、温度等因素的变化规律,建立了多因素校正气体拉曼光谱定量分析方法,电力装备状态特征气体/绝缘气体的定量检测准确度大于95%。.2)建立了无源微光纤法珀腔局部放电传感方法,获取了光纤端面膜层材料、厚度对端面反射率及干涉光强的影响规律,揭示了石墨烯膜片光学和力学特性对干涉光强及超声波频率响应的影响机理,建立了基于绝缘介质填充的传感器绝缘优化方法。研制了光纤局放超声传感器,检测下限低于20 pc, 灵敏度达到1800 nm/kPa,谐振频率大于150 kHz。研制了光纤电流传感器,检测频率达到5 kHz,建立了基于声-电联合光纤传感的局放准确定位、定量方法,局放定位精度达到5 cm,实现了光纤局放传感器并联复用,并建立了多频局放超声波传感阵列。.3)建立了荧光光谱型无源量子点光纤温度传感方法,揭示了量子点材料、结构等对荧光光谱的影响机制,研究了填充有CsPbBr3、CsPb(Br/I)3和CsPbI3的量子点光纤传感器的温变特性,获取了量子点光谱特征量与温度间的变化规律。建立了多温变特性参量综合精确测温定量模型方法,搭建了量子点无源光纤温度检测系统,实现了设备内部温度的分布式光纤准确检测,在室温至100 ℃范围内实现了温度测量精度小于2 ℃。.项目建立的无源光纤气体、局部放电、温度传感方法,为实现无源光纤传感在电气设备运行状态多参量在线监测领域的普及应用奠定了基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
粗颗粒土的静止土压力系数非线性分析与计算方法
低轨卫星通信信道分配策略
近 40 年米兰绿洲农用地变化及其生态承载力研究
基于多模态信息特征融合的犯罪预测算法研究
输变电设备运行状态无源智能传感关键技术
水下多参量光纤传感基础研究
光纤压力/温度双参量传感技术研究
基于光电振荡的高精度快响应多参量光纤传感技术研究