Miniaturization, high-sensitivity, high-throughput are new requirements for peoples proposed to public safety, the environment, health care analytical techniques. Although the biosensors made remarkable achievements, most of them attached labels to the samples and reduced the detectable efficiency of valuable information from the original systems. Optical resonances known as whispering gallery modes, the change in the surrounding index of refraction shifts the whispering gallery modes spectral peak and offers the potential for trace detection of molecules near to, adsorbed onto or bound to the micro-spherical cavities sensor elements without labeling. In order to simplify the test device, increase the specificity and sensitivity detection of biomolecules, we intend to construct a biosensor of single-mode laser emission from quantum dots. On the flow-focusing microfluidic chip, the microspheres with 9μm in diameter were rapid polymerized through the “click” chemistry between mercapto-rich quantum dots/SiO2 submicron particles and double-ended en/yn compounds. And the microsphere particle size variation coefficient was less than 5%. Meanwhile, the biosensor of single-mode laser emission from quantum dots were received after numerous amino/carboxyl group assembled onto the surface of microsphere and specific modified by the biolomoleculars. Possible multiplexing applications can be extended to a microfluidic/ microarray approach, and high-sensitivity detection of high-throughput screening of multi/label-free biomolecules. With prospects of such a bright future, we are confident these optical resonators will make grand contributions for improved high-sensitive detection of disease as well as high-throughput screening of lead compounds in drug discovery and so on.
微型化、高灵敏、高通量是人们对公共安全、生态环境、健康医疗的分析检测技术提出的新要求。虽然生物传感器取得瞩目的成绩,但绝大部分传感器都需要对分析样品进行标记化处理,降低了从原始体系中获得有价值信息的效率。而基于回音壁模式的微腔传感器能够精确地探知腔体附近或吸附在表面的、未经标记的单分子。为简化测试装置、提高生物分子检测的灵敏度和特异性,拟构建量子点单模激光微腔生物传感器。在流式聚焦型微流控芯片上,利用光点击化学反应将表面富含巯基的量子点亚微米颗粒与双端烯/炔化合物迅速聚合成直径为9μm的量子点/二氧化硅微球,保持微球粒径变异系数<5%,同时微球表面组装氨基、羧基等活性基团,经生物特异性修饰,完成量子点单模激光微腔传感器的构建。该技术有助于构建量子点激光可调谐的悬浮传感器阵列,实现单一激发光源的高通量、多组分、免标记生物分子高灵敏检测,推动疾病高灵敏检测、药物有效成分的高通量筛选等技术发展。
微型化、高灵敏、高通量是人们对公共安全、生态环境、健康医疗的分析检测技术提出的新要求。为简化测试装置、提高生物分子检测的灵敏度和特异性,拟构建量子点单模激光微腔生物传感器。本项目在流式微流控芯片上,利用光化学反应将量子点与甲基丙烯酸甲酯/丙烯酸甲酯迅速聚合成直径为9μm的量子点荧光微球,微流控技术精确控制量子点复合微球的原位生长,确保微腔的光学性质、单分散性、形貌、直径(~9μm)和粒度分布等性能。重点研究微流控制备技术的条件控制问题,通过设计新型微流控芯片,从根本上解决微流控制备微球的固化效率、速率、精密度等问题,控制微球粒径变异系数<2.5%, CV<15%,光固化时间~20min。该技术适用于其他功能型微球的制备,例如:磁性微球,形成具有自主知识产权的平台技术。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
内点最大化与冗余点控制的小型无人机遥感图像配准
基于飞秒激光纳流控技术实现量子点/微腔复合体系光场调控研究
飞秒激光微流道烧蚀法构建绿光硒化锌量子点的缺陷态跃迁机理研究
基于LTCC的光学微腔微流控集成传感芯片基础研究
基于点击化学的微囊藻毒素化学传感器构建