G-Hurwitz数的chamber结构与穿墙公式

基本信息
批准号:11401571
项目类别:青年科学基金项目
资助金额:22.00
负责人:张汉雄
学科分类:
依托单位:中国矿业大学(北京)
批准年份:2014
结题年份:2017
起止时间:2015-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:
关键词:
GHurwitz数chamber结构穿墙公式玻色费米对应cutandjoin方程
结项摘要

Hurwitz numbers are classical objects in enumerative geometry, which relate the geometry of Riemann surfaces to the representation theory of symmetric groups. The generating series of Hurwitz numbers satisfies the cut-and-join equation. Hurwitz numbers are closely related to Gromov-Witten theory, and the cut-and-join equation is used to prove many theorems in Gromov-Witten theory. Under the influence of orbifold theory, people try to generalize Hurwitz numbers by adding a finite group. One such generalization is called G-Hurwitz numbers, whose generating function satisfies the colored cut-and-join equations. Using boson-fermion correspondence, we can write the generating function of G-Hurwitz numbers as the vacuum expectation value of certain operators, thus proving the it is a tau function of the 2-Toda hierarchy..In this project, we plan to study the further applications of the colored cut-and-join equations ang the chamber structure of G-Hurwitz numbers and the corresponding wall-crossing formulas.

Hurwitz数是计数几何中的经典对象,它和曲线模空间的几何以及对称群的表示论密切相关。Hurwitz数的生成函数满足cut-and-join方程。Hurwitz数与Gromov-Witten理论紧密相关,cut-and-join方程也被用来证明许多与Gromov-Witten理论相关的定理。受到orbifold理论的影响,人们考虑加入一个有限群 G 的作用来推广Hurwitz数。一个自然的推广就是G-Hurwitz 数,它的生成函数满足colored cut-and-join方程。利用玻色费米对应,我们可以把G-Hurwitz 数的生成函数写成一个算子的真空期望值,从而证明它是2-Toda可积方程簇的一个tau函数。本项目中,我们准备研究colored cut-and-join方程的进一步应用以及G-Hurwitz 数的chamber结构和wall-crossing公式。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于被动变阻尼装置高层结构风振控制效果对比分析

基于被动变阻尼装置高层结构风振控制效果对比分析

DOI:10.13197/j.eeev.2019.05.95.fuwq.009
发表时间:2019
2

基于多色集合理论的医院异常工作流处理建模

基于多色集合理论的医院异常工作流处理建模

DOI:
发表时间:2020
3

基于改进LinkNet的寒旱区遥感图像河流识别方法

基于改进LinkNet的寒旱区遥感图像河流识别方法

DOI:10.6041/j.issn.1000-1298.2022.07.022
发表时间:2022
4

血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展

血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展

DOI:10.13191/j.chj.2017.0028
发表时间:2016
5

Cannabinoid receptor GPR55 activation blocks nicotine use disorder by regulation of AMPAR phosphorylation

Cannabinoid receptor GPR55 activation blocks nicotine use disorder by regulation of AMPAR phosphorylation

DOI:10.1007/s00213-021-05949-x
发表时间:2021

张汉雄的其他基金

批准号:11326074
批准年份:2013
资助金额:3.00
项目类别:数学天元基金项目

相似国自然基金

1

G-Hurwitz数,colored cut-and-join方程和镜像对称

批准号:11326074
批准年份:2013
负责人:张汉雄
学科分类:A0107
资助金额:3.00
项目类别:数学天元基金项目
2

Hilbert概型上相交数的万有性公式

批准号:11801554
批准年份:2018
负责人:王芝兰
学科分类:A0107
资助金额:23.00
项目类别:青年科学基金项目
3

极小不可满足公式的结构与分类

批准号:61272059
批准年份:2012
负责人:赵希顺
学科分类:F0201
资助金额:70.00
项目类别:面上项目
4

Fox-Wright函数求和公式与变换公式的研究

批准号:11661032
批准年份:2016
负责人:魏传安
学科分类:A0408
资助金额:38.00
项目类别:地区科学基金项目