Design and architecture of all-solid-state Z scheme photocatalytic systems inspired by the natural photosynthesis process have been become a hot topic for developing the renewable and clean energy resources through the photocatalysis technique. This kind of artificial heterogeneous Z-scheme photocatalytic systems has broad prospect of application in the fields of photocatalytic water splitting and CO2 photoreduction because of its wide light-absorption range, strong redox ability with high selectivity as well as good photostability. However, the industrial application of these photocatalysts so far is hindered by their drawbacks, such as poor electronic transmission capacity for traditional mediator, less amount of charge-carriers generation, low quantum yields, limited specific surface areas, and so forth. To solve the above scientific issues, we herein plan to hierarchically construct a novel kind of multicomponent co-sensitized Z-scheme photocatalytic systems with size-controlled carbon nanolayer as the continuous electron mediator. It is expected that the optimal combination of good electrical conductivity of carbon nanolayers, semiconductor heterojunction effect, noble metal SPR (coupling) effect, and unique 3D open nanostructure property could synergistically enhance the photocatalytic activity for highly efficient solar-to-fuels conversion. Meanwhile, the dynamics processes on charge-carriers generation and migration would be studied in-depth through the transient photoluminescence spectroscopy and photocurrent responses. At last, the photocatalytic mechanism of these photocatalysts would be proposed by combining the results of verification experiments and theoretical simulation. This work provides a useful platform for the design and synthesis of the multicomponent co-sensitized Z-scheme photocatalytic systems that would exhibit excellent performance in the photocatalytic solar fuels production.
模拟自然界光合作用原理设计并构筑全固态Z型光催化材料体系已成为光催化技术在可再生清洁能源领域的研究热点。该类型光催化材料具有光谱响应范围广、光稳定性优异、氧化还原能力(选择性)强等优点,因此在光解水产氢和光还原CO2制有机低碳燃料方面有着极为广阔的应用前景。然而,较差的电子介体传输能力、较少的光生载流子产率以及较低的光量子效率等缺点一直限制着该类型光催化材料的实用化进程。针对上述科学性问题,本项目拟选取厚度可调的纳米碳层作为连续电子介体,并将其与能带匹配的半导体和贵金属材料区域化分级组装,构筑新型三维开放微纳分级结构多组分共敏化Z型光催化材料体系。利用纳米碳层优异的电子传输性能、半导体异质结效应、贵金属SPR(耦合)效应以及材料独特的纳米结构特性协同提高体系的光催化太阳燃料转换性能。同时,借助辅助性实验和理论模拟实验,探索该类光催化材料光生载流子动力学基本规律,最终揭示其光催化反应机理。
模拟自然界光合作用原理设计并构筑全固态Z型光催化材料体系已成为光催化技术在可再生清洁能源领域的研究热点。本项目利用半导体异质结效应、表面等离激元共振行为、纳米碳材料电子传输性能以及材料本身的纳米结构特性协同敏化Z型光催化体系的载流子动力学过程、增加表面活性位点,基于在半导体异质结体系的构建与筛选、表面等离激元共振敏化体系的拓展与优化以及纳米碳材料的制备与组装等方面的研究结果,采用静电纺丝技术、水热/溶剂热技术、湿化学合成等方法,设计构建了三维开放微纳分级结构多组分共敏化Z型光催化体系,总结了体系中各异质组分、微观结构、异质界面、能带结构对其光催化活性的影响,并且与理论模拟相结合,揭示了体系中光子吸收、载流子分离、迁移以及复合等瞬态过程的基本规律。最后,发展了系列新型宽光谱响应光催化材料,获得了较高的光催化产氢和CO2还原性能。上述研究成果为探索光催化技术在未来环境保护及可持续清洁能源领域的实用化提供了新材料体系。在本项目的资助下,共发表SCI检索论文23篇,包括Advanced Materials、Advanced Functional Materials等,SCI他引564次;1篇论文入选ESI前0.1%热点论文;2篇论文入选ESI前1%高被引论文;授权国家发明专利1项;获得省部级科研奖励4项。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
低轨卫星通信信道分配策略
Z型光解水体系中电子转移介体的界面行为调控研究
基于原子层纳米片结构的Z-型机制高效光催化全解水体系设计与研究
石墨烯基Z型光催化体系对多溴联苯醚的光催化还原降解研究
高效全固态Z型光催化体系的构建与机理研究