Global environmental pollution and energy crisis have become increasingly serious issues for human beings to confront in modern society. Photocatalysis, as an environmentally-friendly “green” technique, has broad prospect of application in the fields of waste-water treatment, air purification, solar-to-fuel conversion, and so forth, because organic pollutants can be decomposed effectively, and water and CO2 can be reduced into H2 and hydrocarbon fuels, respectively, by semiconductor-based photocatalysts under light irradiation with the photon energy higher or equal to their bandgaps. However, the industrial application of semiconductors as the photocatalysts so far is hindered by their drawbacks of the poor solar-harvesting capability, low quantum yields, limited specific surface areas, and so on. To solve the above problems, we herein plan to fabricate the noble metal/electrospun SiO2 nanotubes/ultrathin-layered SnS2 nanosheets composites. It is expected to obtain a new kind of one-dimensional (1D) plasmonic photocatalysts with strong absorption of visible light and high photocatalytic efficiency by taking the advantages of visible-light absorption of SnS2 nanosheets, Surface-Plasmon-Resonance (SPR) effect of noble metal nanoparticles, and high specific surface areas of electrospun SiO2 nanotubes. Meanwhile, the photocatalytic mechanism of this plasmonic photocatalysts would be proposed by combining the results of verification experiments and theoretical simulation experiments. This work provides a useful platform for the design and fabrication of 1D plasmonic photocatalysts that would exhibit excellent performance in the photocatalytic applications.
环境污染与能源危机已成为威胁人类生存的严峻问题。半导体光催化技术因其具有光降解有机污染物、光分解水制取氢能以及将温室气体二氧化碳还原成为有机低碳燃料等优点,而使其在污水处理、环境净化以及太阳能源与燃料能源转化等方面有着极为广阔的应用前景。然而,较低的太阳光能利用率、较差的光量子效率以及有限的比表面积等缺点一直限制着半导体光催化剂的产业化进程。针对以上问题,本项目拟合成贵金属/电纺SiO2纳米管/超薄层状SnS2纳米片复合材料,利用半导体SnS2纳米片良好的可见光吸收特性、贵金属纳米粒子表面等离子体共振(SPR)效应,结合电纺SiO2纳米管一维纳米结构特性、高表体比特性以及高比表面积特性,获得可见光利用率高、光催化性能优异的新型一维表面等离子体光催化剂。同时,综合辅助性实验、验证性实验以及理论模拟实验结果,揭示该类光催化剂的可见光催化机理,为其走向实用化提供相关实验数据与相应理论依据。
半导体光催化材料的光吸收范围和载流子分离效率是影响其光催化活性的两个重要因素。基于贵金属表面等离激元共振效应,设计与合成多元纳米异质结构是获得宽光谱响应范围和高效载流子分离光催化材料的有效方法。建立与发展该类材料可控合成的新方法已成为当前光催化领域的研究热点。本项目利用水热/溶剂热、原位还原以及溶胶-凝胶等制备方法,以电纺功能纳米纤维为基体,构筑了系列新型一维表面等离激元异质结构光催化材料。系统地研究了该类材料的光催化还原水制氢和还原二氧化碳制甲烷活性,并且揭示了其载流子动力学过程的基本规律。研究结果表明由于贵金属表面等离激元共振效应、半导体异质结效应以及电纺一维纳米结构特性的协同敏化作用,使得该类光催化材料展现出宽光谱吸收范围和高效载流子分离的优异特性,因此显著地提高了材料的光催化活性。上述研究成果为发展新型高效一维表面等离激元异质结构光催化材料提供了一条有效途径。本项目在Advanced Materials、Light: Science & Applications、Applied Catalysis B: Environmental、Nanoscale、Scientific Reports等SCI检索杂志上发表相关研究论文12篇,SCI引用330次;影响因子超过10的论文3篇;3篇论文被列为“ESI高被引用论文”。申请国家发明专利6项,其中授权4项。获得辽宁省自然科学二等奖一项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于二维材料的自旋-轨道矩研究进展
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
上转换纳米材料在光动力疗法中的研究进展
铟基硫化物(AInxSy)/电纺碳纳米纤维/贵金属三元复合材料的构筑及其可见光催化性能研究
基于SPR效应的半金属铋/层状铋化合物复合材料的制备及光催化性能研究
基于SPR效应增强异质结可见光薄膜光催化剂研究
新型窄带隙钒酸盐/电纺碳纳米纤维异质结材料的制备及其可见光催化性能研究